logo

Bir alt dizinin dağ şeklinde olup olmadığını bulun

GfG Practice'de deneyin ' title= #practiceLinkDiv { görüntü: yok !önemli; }

Bize bir tamsayı dizisi ve bu aralığa giren alt dizinin dağ biçiminde değerlere sahip olup olmadığını bulmamız gereken bir aralık veriliyor. Tüm değerler artıyor veya azalıyorsa ya da önce artıp sonra azalıyorsa, alt dizinin tüm değerlerinin bir dağ biçiminde olduğu söylenir. 
Daha resmi olarak bir alt dizi [a1 a2 a3…aN] K 1 tamsayısı varsa dağ şeklinde olduğu söylenir<= K <= N such that 
a1<= a2 <= a3 .. <= aK >= a(K+1) >= a(K+2) …. >= birN  

vijay sinema oyuncusu

Örnekler:  

  Input : Arr[]   = [2 3 2 4 4 6 3 2] Range = [0 2]   Output :    Yes   Explanation:   The output is yes  subarray is [2 3 2] so subarray first increases and then decreases   Input:    Arr[] = [2 3 2 4 4 6 3 2] Range = [2 7]   Output:   Yes   Explanation:   The output is yes  subarray is [2 4 4 6 3 2] so subarray first increases and then decreases   Input:   Arr[]= [2 3 2 4 4 6 3 2] Range = [1 3]   Output:   no   Explanation:   The output is no subarray is [3 2 4] so subarray is not in the form above stated
Recommended Practice Dağ Alt Dizisi Sorunu Deneyin!

Çözüm:  



    Yaklaşmak:Sorunun birden fazla sorgusu olduğundan, her sorgu için çözümün mümkün olan en az zaman karmaşıklığıyla hesaplanması gerekir. Bu nedenle, orijinal dizinin uzunluğunda iki ekstra boşluk oluşturun. Her eleman için sol tarafta artan, yani önceki elemanından daha büyük olan son indeksi bulun ve sağ taraftaki elemanı bulun, sağ tarafta azalan yani bir sonraki elemanından daha büyük olan ilk indeksi depolayacaktır. Bu değer her indeks için sabit zamanda hesaplanabiliyorsa, verilen her aralık için cevap sabit zamanda verilebilir.Algoritma: 
    1. İki ekstra uzunluk alanı oluşturun N sol Ve Sağ ve ekstra bir değişken sonptr
    2. Başlat sol[0] = 0 ve sonptr = 0
    3. Orijinal diziyi ikinci dizinden sonuna kadar dolaş
    4. Her indeks için önceki elemandan büyük olup olmadığını kontrol edin, eğer evet ise, ardından güncelleyin. sonptr mevcut endeksle.
    5. Her dizin deposu için sonptr içinde sol[i]
    6. başlatmak sağ[N-1] = N-1 ve sonptr = N-1
    7. Orijinal diziyi sondan ikinci dizinden başlangıca doğru hareket ettirin
    8. Her indeks için bir sonraki elemandan büyük olup olmadığını kontrol edin, eğer evet ise ardından güncelleyin. sonptr mevcut endeksle.
    9. Her dizin deposu için sonptr içinde doğru[i]
    10. Şimdi sorguları işleyin
    11. her sorgu için l r eğer sağ[l] >= sol[r] sonra yazdır Evet başka HAYIR
    Uygulama:
C++
// C++ program to check whether a subarray is in // mountain form or not #include    using namespace std; // Utility method to construct left and right array int preprocess(int arr[] int N int left[] int right[]) {  // Initialize first left index as that index only  left[0] = 0;  int lastIncr = 0;  for (int i = 1; i < N; i++)  {  // if current value is greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }  // Initialize last right index as that index only  right[N - 1] = N - 1;  int firstDecr = N - 1;  for (int i = N - 2; i >= 0; i--)  {  // if current value is greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  } } // Method returns true if arr[L..R] is in mountain form bool isSubarrayMountainForm(int arr[] int left[]  int right[] int L int R) {  // return true only if right at starting range is  // greater than left at ending range  return (right[L] >= left[R]); } // Driver code to test above methods int main() {  int arr[] = {2 3 2 4 4 6 3 2};  int N = sizeof(arr) / sizeof(int);  int left[N] right[N];  preprocess(arr N left right);  int L = 0;  int R = 2;  if (isSubarrayMountainForm(arr left right L R))  cout << 'Subarray is in mountain formn';  else  cout << 'Subarray is not in mountain formn';  L = 1;  R = 3;  if (isSubarrayMountainForm(arr left right L R))  cout << 'Subarray is in mountain formn';  else  cout << 'Subarray is not in mountain formn';  return 0; } 
Java
// Java program to check whether a subarray is in // mountain form or not class SubArray {  // Utility method to construct left and right array  static void preprocess(int arr[] int N int left[] int right[])  {  // initialize first left index as that index only  left[0] = 0;  int lastIncr = 0;    for (int i = 1; i < N; i++)  {  // if current value is greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }    // initialize last right index as that index only  right[N - 1] = N - 1;  int firstDecr = N - 1;    for (int i = N - 2; i >= 0; i--)  {  // if current value is greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  }  }    // method returns true if arr[L..R] is in mountain form  static boolean isSubarrayMountainForm(int arr[] int left[]  int right[] int L int R)  {  // return true only if right at starting range is  // greater than left at ending range  return (right[L] >= left[R]);  }    public static void main(String[] args)  {  int arr[] = {2 3 2 4 4 6 3 2};  int N = arr.length;  int left[] = new int[N];  int right[] = new int[N];  preprocess(arr N left right);  int L = 0;  int R = 2;    if (isSubarrayMountainForm(arr left right L R))  System.out.println('Subarray is in mountain form');  else  System.out.println('Subarray is not in mountain form');    L = 1;  R = 3;    if (isSubarrayMountainForm(arr left right L R))  System.out.println('Subarray is in mountain form');  else  System.out.println('Subarray is not in mountain form');  } } // This Code is Contributed by Saket Kumar 
Python3
# Python 3 program to check whether a subarray is in # mountain form or not # Utility method to construct left and right array def preprocess(arr N left right): # initialize first left index as that index only left[0] = 0 lastIncr = 0 for i in range(1N): # if current value is greater than previous # update last increasing if (arr[i] > arr[i - 1]): lastIncr = i left[i] = lastIncr # initialize last right index as that index only right[N - 1] = N - 1 firstDecr = N - 1 i = N - 2 while(i >= 0): # if current value is greater than next # update first decreasing if (arr[i] > arr[i + 1]): firstDecr = i right[i] = firstDecr i -= 1 # method returns true if arr[L..R] is in mountain form def isSubarrayMountainForm(arr left right L R): # return true only if right at starting range is # greater than left at ending range return (right[L] >= left[R]) # Driver code  if __name__ == '__main__': arr = [2 3 2 4 4 6 3 2] N = len(arr) left = [0 for i in range(N)] right = [0 for i in range(N)] preprocess(arr N left right) L = 0 R = 2 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') L = 1 R = 3 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') # This code is contributed by # Surendra_Gangwar 
C#
// C# program to check whether  // a subarray is in mountain  // form or not using System; class GFG {    // Utility method to construct   // left and right array  static void preprocess(int []arr int N   int []left int []right)  {  // initialize first left   // index as that index only  left[0] = 0;  int lastIncr = 0;    for (int i = 1; i < N; i++)  {  // if current value is   // greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }    // initialize last right   // index as that index only  right[N - 1] = N - 1;  int firstDecr = N - 1;    for (int i = N - 2; i >= 0; i--)  {  // if current value is   // greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  }  }    // method returns true if  // arr[L..R] is in mountain form  static bool isSubarrayMountainForm(int []arr int []left  int []right int L int R)  {  // return true only if right at   // starting range is greater   // than left at ending range  return (right[L] >= left[R]);  }      // Driver Code  static public void Main ()  {  int []arr = {2 3 2 4  4 6 3 2};  int N = arr.Length;  int []left = new int[N];  int []right = new int[N];  preprocess(arr N left right);    int L = 0;  int R = 2;    if (isSubarrayMountainForm(arr left   right L R))  Console.WriteLine('Subarray is in ' +   'mountain form');  else  Console.WriteLine('Subarray is not ' +   'in mountain form');    L = 1;  R = 3;    if (isSubarrayMountainForm(arr left   right L R))  Console.WriteLine('Subarray is in ' +   'mountain form');  else  Console.WriteLine('Subarray is not ' +   'in mountain form');  } } // This code is contributed by aj_36 
JavaScript
<script>  // Javascript program to check whether   // a subarray is in mountain   // form or not    // Utility method to construct   // left and right array  function preprocess(arr N left right)  {  // initialize first left   // index as that index only  left[0] = 0;  let lastIncr = 0;    for (let i = 1; i < N; i++)  {  // if current value is   // greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }    // initialize last right   // index as that index only  right[N - 1] = N - 1;  let firstDecr = N - 1;    for (let i = N - 2; i >= 0; i--)  {  // if current value is   // greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  }  }    // method returns true if  // arr[L..R] is in mountain form  function isSubarrayMountainForm(arr left right L R)  {  // return true only if right at   // starting range is greater   // than left at ending range  return (right[L] >= left[R]);  }    let arr = [2 3 2 4 4 6 3 2];  let N = arr.length;  let left = new Array(N);  let right = new Array(N);  preprocess(arr N left right);  let L = 0;  let R = 2;  if (isSubarrayMountainForm(arr left right L R))  document.write('Subarray is in ' + 'mountain form' + '
'
); else document.write('Subarray is not ' + 'in mountain form' + '
'
); L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) document.write('Subarray is in ' + 'mountain form'); else document.write('Subarray is not ' + 'in mountain form'); </script>
    Çıkış:
Subarray is in mountain form Subarray is not in mountain form
    Karmaşıklık Analizi: 
      Zaman Karmaşıklığı:Açık). 
      Zaman karmaşıklığı O(n) olduğundan yalnızca iki geçişe ihtiyaç vardır.Uzay Karmaşıklığı:Açık). 
      Uzay karmaşıklığının O(n) olması için n uzunluğunda iki ekstra uzay gereklidir.


 

kylie jenner'ın yaşı
Test Oluştur