logo

İki Sayının Ortak Bölenleri

İki tam sayı verildiğinde görev, verilen sayıların tüm ortak bölenlerinin sayısını bulmaktır?

Örnekler:  

Input : a = 12 b = 24 Output: 6 // all common divisors are 1 2 3 // 4 6 and 12 Input : a = 3 b = 17 Output: 1 // all common divisors are 1 Input : a = 20 b = 36 Output: 3 // all common divisors are 1 2 4
Recommended Practice Ortak Bölenler Deneyin!

Başvurulması tavsiye edilir Belirli bir sayının tüm bölenleri Bu makalenin bir önkoşulu olarak. 



Naif Çözüm  
Basit bir çözüm, ilk önce ilk sayının tüm bölenlerini bulmak ve bunları bir dizide veya karmada saklamaktır. Daha sonra ikinci sayının ortak bölenlerini bulun ve saklayın. Son olarak depolanan iki dizinin veya karmanın ortak öğelerini yazdırın. Burada önemli olan, bir bölenin asal çarpanlarının kuvvetlerinin büyüklüğünün, a ve b'nin iki asal çarpanının minimum kuvvetine eşit olması gerektiğidir.

  • Bir kullanımın asal faktörlerini bulun asal çarpanlara ayırma .
  • Her asal çarpanın sayısını bulun A ve bunu bir Hashmap'te saklayın.
  • Asal çarpanlara ayırma B farklı asal çarpanlarını kullanarak A .
  • O zaman toplam bölen sayısı çarpımına eşit olacaktır. (sayım + 1) 
    her faktörün.
  • saymakher asal çarpanın minimum sayısıdır A Ve B.
  • Bu, tüm bölenlerin sayısını verir A Ve B .
C++
// C++ implementation of program  #include    using namespace std; // Map to store the count of each // prime factor of a  map<int int> ma; // Function that calculate the count of  // each prime factor of a number  void primeFactorize(int a)  {   for(int i = 2; i * i <= a; i += 2)   {   int cnt = 0;   while (a % i == 0)   {   cnt++;   a /= i;   }   ma[i] = cnt;   }   if (a > 1)  {  ma[a] = 1;  } }  // Function to calculate all common // divisors of two given numbers  // a b --> input integer numbers  int commDiv(int a int b)  {     // Find count of each prime factor of a   primeFactorize(a);   // stores number of common divisors   int res = 1;   // Find the count of prime factors   // of b using distinct prime factors of a   for(auto m = ma.begin();  m != ma.end(); m++)  {  int cnt = 0;   int key = m->first;   int value = m->second;   while (b % key == 0)   {   b /= key;   cnt++;   }   // Prime factor of common divisor   // has minimum cnt of both a and b   res *= (min(cnt value) + 1);   }   return res;  }  // Driver code  int main() {  int a = 12 b = 24;     cout << commDiv(a b) << endl;     return 0; } // This code is contributed by divyeshrabadiya07 
Java
// Java implementation of program import java.util.*; import java.io.*; class GFG {  // map to store the count of each prime factor of a  static HashMap<Integer Integer> ma = new HashMap<>();  // method that calculate the count of  // each prime factor of a number  static void primeFactorize(int a)  {  for (int i = 2; i * i <= a; i += 2) {  int cnt = 0;  while (a % i == 0) {  cnt++;  a /= i;  }  ma.put(i cnt);  }  if (a > 1)  ma.put(a 1);  }  // method to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  static int commDiv(int a int b)  {  // Find count of each prime factor of a  primeFactorize(a);  // stores number of common divisors  int res = 1;  // Find the count of prime factors of b using  // distinct prime factors of a  for (Map.Entry<Integer Integer> m : ma.entrySet()) {  int cnt = 0;  int key = m.getKey();  int value = m.getValue();  while (b % key == 0) {  b /= key;  cnt++;  }  // prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.min(cnt value) + 1);  }  return res;  }  // Driver method  public static void main(String args[])  {  int a = 12 b = 24;  System.out.println(commDiv(a b));  } } 
Python3
# Python3 implementation of program  import math # Map to store the count of each # prime factor of a  ma = {} # Function that calculate the count of  # each prime factor of a number  def primeFactorize(a): sqt = int(math.sqrt(a)) for i in range(2 sqt 2): cnt = 0 while (a % i == 0): cnt += 1 a /= i ma[i] = cnt if (a > 1): ma[a] = 1 # Function to calculate all common # divisors of two given numbers  # a b --> input integer numbers  def commDiv(a b): # Find count of each prime factor of a  primeFactorize(a) # stores number of common divisors  res = 1 # Find the count of prime factors  # of b using distinct prime factors of a  for key value in ma.items(): cnt = 0 while (b % key == 0): b /= key cnt += 1 # Prime factor of common divisor  # has minimum cnt of both a and b  res *= (min(cnt value) + 1) return res # Driver code  a = 12 b = 24 print(commDiv(a b)) # This code is contributed by Stream_Cipher 
C#
// C# implementation of program using System; using System.Collections.Generic;  class GFG{   // Map to store the count of each  // prime factor of a static Dictionary<int  int> ma = new Dictionary<int  int>(); // Function that calculate the count of // each prime factor of a number static void primeFactorize(int a) {  for(int i = 2; i * i <= a; i += 2)  {  int cnt = 0;  while (a % i == 0)  {  cnt++;  a /= i;  }  ma.Add(i cnt);  }    if (a > 1)  ma.Add(a 1); } // Function to calculate all common  // divisors of two given numbers // a b --> input integer numbers static int commDiv(int a int b) {    // Find count of each prime factor of a  primeFactorize(a);    // Stores number of common divisors  int res = 1;    // Find the count of prime factors  // of b using distinct prime factors of a  foreach(KeyValuePair<int int> m in ma)  {  int cnt = 0;  int key = m.Key;  int value = m.Value;    while (b % key == 0)  {  b /= key;  cnt++;  }  // Prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.Min(cnt value) + 1);  }  return res; } // Driver code  static void Main() {  int a = 12 b = 24;    Console.WriteLine(commDiv(a b)); } } // This code is contributed by divyesh072019 
JavaScript
<script>   // JavaScript implementation of program  // Map to store the count of each  // prime factor of a  let ma = new Map();  // Function that calculate the count of  // each prime factor of a number  function primeFactorize(a)  {  for(let i = 2; i * i <= a; i += 2)  {  let cnt = 0;  while (a % i == 0)  {  cnt++;  a = parseInt(a / i 10);  }  ma.set(i cnt);  }  if (a > 1)  {  ma.set(a 1);  }  }  // Function to calculate all common  // divisors of two given numbers  // a b --> input integer numbers  function commDiv(ab)  {  // Find count of each prime factor of a  primeFactorize(a);  // stores number of common divisors  let res = 1;  // Find the count of prime factors  // of b using distinct prime factors of a  ma.forEach((valueskeys)=>{  let cnt = 0;  let key = keys;  let value = values;  while (b % key == 0)  {  b = parseInt(b / key 10);  cnt++;  }  // Prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.min(cnt value) + 1);  })  return res;  }  // Driver code  let a = 12 b = 24;    document.write(commDiv(a b));   </script> 

Çıkış:  

6

Zaman Karmaşıklığı : O(?n log n) 
Yardımcı Alan: Açık)


Verimli Çözüm - 
Daha iyi bir çözüm hesaplamaktır. en büyük ortak bölen (gcd) verilen iki sayının ve ardından bu gcd'nin bölenlerini sayın. 

C++
// C++ implementation of program #include    using namespace std; // Function to calculate gcd of two numbers int gcd(int a int b) {  if (a == 0)  return b;  return gcd(b % a a); } // Function to calculate all common divisors // of two given numbers // a b --> input integer numbers int commDiv(int a int b) {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result; } // Driver program to run the case int main() {  int a = 12 b = 24;  cout << commDiv(a b);  return 0; } 
Java
// Java implementation of program class Test {  // method to calculate gcd of two numbers  static int gcd(int a int b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // method to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  static int commDiv(int a int b)  {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= Math.sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  // Driver method  public static void main(String args[])  {  int a = 12 b = 24;  System.out.println(commDiv(a b));  } } 
Python3
# Python implementation of program from math import sqrt # Function to calculate gcd of two numbers def gcd(a b): if a == 0: return b return gcd(b % a a) # Function to calculate all common divisors  # of two given numbers  # a b --> input integer numbers  def commDiv(a b): # find GCD of a b n = gcd(a b) # Count divisors of n result = 0 for i in range(1int(sqrt(n))+1): # if i is a factor of n if n % i == 0: # check if divisors are equal if n/i == i: result += 1 else: result += 2 return result # Driver program to run the case  if __name__ == '__main__': a = 12 b = 24; print(commDiv(a b)) 
C#
// C# implementation of program using System; class GFG {  // method to calculate gcd  // of two numbers  static int gcd(int a int b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // method to calculate all  // common divisors of two  // given numbers a b -->  // input integer numbers  static int commDiv(int a int b)  {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= Math.Sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  // Driver method  public static void Main(String[] args)  {  int a = 12 b = 24;  Console.Write(commDiv(a b));  } } // This code contributed by parashar. 
PHP
 // PHP implementation of program // Function to calculate  // gcd of two numbers function gcd($a $b) { if ($a == 0) return $b; return gcd($b % $a $a); } // Function to calculate all common  // divisors of two given numbers // a b --> input integer numbers function commDiv($a $b) { // find gcd of a b $n = gcd($a $b); // Count divisors of n. $result = 0; for ($i = 1; $i <= sqrt($n); $i++) { // if 'i' is factor of n if ($n % $i == 0) { // check if divisors  // are equal if ($n / $i == $i) $result += 1; else $result += 2; } } return $result; } // Driver Code $a = 12; $b = 24; echo(commDiv($a $b)); // This code is contributed by Ajit. ?> 
JavaScript
<script>  // Javascript implementation of program    // Function to calculate gcd of two numbers  function gcd(a b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // Function to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  function commDiv(a b)  {  // find gcd of a b  let n = gcd(a b);  // Count divisors of n.  let result = 0;  for (let i = 1; i <= Math.sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  let a = 12 b = 24;  document.write(commDiv(a b));   </script> 

Çıkış :   

6

Zaman karmaşıklığı: Açık1/2) burada n iki sayının gcd'sidir.
Yardımcı Alan: Ç(1)

Başka Bir Yaklaşım:

1. 'a' ve 'b' iki tamsayısını alan ve Öklid algoritmasını kullanarak bunların en büyük ortak bölenini (GCD) döndüren bir 'gcd' fonksiyonu tanımlayın.
2. 'a' ve 'b' iki tamsayısını alan ve GCD'lerini kullanarak 'a' ve 'b'nin ortak bölenlerinin sayısını sayan bir 'count_common_divisors' fonksiyonu tanımlayın.
3. 'gcd' fonksiyonunu kullanarak 'a' ve 'b'nin GCD'sini hesaplayın.
4. Bir sayaç 'sayımını' 0 olarak başlatın.
5. 'a' ve 'b'nin GCD'sinin 1'den GCD'nin kareköküne kadar tüm olası bölenlerini döngüden geçirin.
6. Mevcut bölen GCD'yi eşit olarak bölüyorsa sayacı 2 artırın (çünkü hem 'a' hem de 'b' bölene bölünebilir).
7. Mevcut bölenin karesi GCD'ye eşitse sayacı 1 azaltın (çünkü bu böleni zaten bir kez saydık).
8. Ortak bölenlerin son sayısını döndürün.
9. Ana fonksiyonda iki tamsayı 'a' ve 'b' tanımlayın ve bu tamsayılarla 'count_common_divisors' fonksiyonunu çağırın.
10. Printf fonksiyonunu kullanarak 'a' ve 'b'nin ortak bölenlerinin sayısını yazdırın.

C
#include  int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b); } int count_common_divisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count; } int main() {  int a = 12;  int b = 18;  int common_divisors = count_common_divisors(a b);  printf('The number of common divisors of %d and %d is %d.n' a b common_divisors);  return 0; } 
C++
#include    using namespace std; int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b); } int count_common_divisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count; } int main() {  int a = 12;  int b = 18;  int common_divisors = count_common_divisors(a b);  cout<<'The number of common divisors of '<<a<<' and '<<b<<' is '<<common_divisors<<'.'<<endl;  return 0; } 
Java
import java.util.*; public class Main {  public static int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b);  }  public static int countCommonDivisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count;  }  public static void main(String[] args) {  int a = 12;  int b = 18;  int commonDivisors = countCommonDivisors(a b);  System.out.println('The number of common divisors of ' + a + ' and ' + b + ' is ' + commonDivisors + '.');  } } 
Python3
import math def gcd(a b): if b == 0: return a return gcd(b a % b) def count_common_divisors(a b): gcd_ab = gcd(a b) count = 0 for i in range(1 int(math.sqrt(gcd_ab)) + 1): if gcd_ab % i == 0: count += 2 if i * i == gcd_ab: count -= 1 return count a = 12 b = 18 common_divisors = count_common_divisors(a b) print('The number of common divisors of' a 'and' b 'is' common_divisors '.') # This code is contributed by Prajwal Kandekar 
C#
using System; public class MainClass {  public static int GCD(int a int b)  {  if (b == 0)  {  return a;  }  return GCD(b a % b);  }  public static int CountCommonDivisors(int a int b)  {  int gcd_ab = GCD(a b);  int count = 0;  for (int i = 1; i * i <= gcd_ab; i++)  {  if (gcd_ab % i == 0)  {  count += 2;  if (i * i == gcd_ab)  {  count--;  }  }  }  return count;  }  public static void Main()  {  int a = 12;  int b = 18;  int commonDivisors = CountCommonDivisors(a b);  Console.WriteLine('The number of common divisors of {0} and {1} is {2}.' a b commonDivisors);  } } 
JavaScript
// Function to calculate the greatest common divisor of  // two integers a and b using the Euclidean algorithm function gcd(a b) {  if(b === 0) {  return a;  }  return gcd(b a % b); } // Function to count the number of common divisors of two integers a and b function count_common_divisors(a b) {  let gcd_ab = gcd(a b);  let count = 0;  for(let i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i === 0) {  count += 2;  if(i * i === gcd_ab) {  count--;  }  }  }  return count; } let a = 12; let b = 18; let common_divisors = count_common_divisors(a b); console.log(`The number of common divisors of ${a} and ${b} is ${common_divisors}.`); 

Çıkış
The number of common divisors of 12 and 18 is 4.

gcd() fonksiyonunun zaman karmaşıklığı O(log(min(a b))) şeklindedir çünkü iki sayıdan küçük olanına göre logaritmik zaman alan Euclid algoritmasını kullanır.

count_common_divisors() işlevinin zaman karmaşıklığı, iki sayının gcd'sinin kareköküne kadar yinelendiğinden O(sqrt(gcd(a b))) şeklindedir.

Her iki fonksiyonun alan karmaşıklığı O(1)'dir çünkü giriş boyutundan bağımsız olarak yalnızca sabit miktarda bellek kullanırlar.