N modüler denklem verildiğinde: A ? X1mod(m1) . . A ? XNmod(mN) Denklemde x'i bulun A ? xmod(m1*M2*M3..*MN) neredeBenasaldır veya bir asal kuvvettir ve i, 1'den n'ye kadar değerler alır. Giriş iki dizi olarak verilir; ilki her x'in değerlerini içeren bir dizidirBenve her asalın değer kümesini içeren ikinci dizi. MBenSon denklemde x'in değeri için bir tamsayı çıktılayın.
Örnekler:
Consider the two equations A ? 2mod(3) A ? 3mod(5) Input : 2 3 3 5 Output : 8 Consider the four equations A ? 3mod(4) A ? 4mod(7) A ? 1mod(9) (32) A ? 0mod(11) Input : 3 4 1 0 4 7 9 11 Output : 1243
Açıklama : Bu denklemleri ikişer ikişer çözmeyi hedefliyoruz. İlk iki denklemi alıp birleştiriyoruz ve bu sonucu üçüncü denklemle birleştirmek için kullanıyoruz. İki denklemi birleştirme süreci örnek 2'yi referans alarak aşağıdaki şekilde açıklanmaktadır:
- A ? 3mod(4) ve A? 4mod(7), ilk başta bize sağlanan iki denklemdir. Ortaya çıkan denklem bir miktar A olsun? Xmod(m1* M2).
- Am tarafından verilir1' * M1* X+ m' * M* X1nerede1' = m'nin modüler tersi1modül mve m' = m'nin modüler tersimodül m1
- Genişletilmiş Öklid algoritmasını kullanarak modüler tersini hesaplayabiliriz.
- x'i buluyoruzA olmakmod (m1* M2)
- Yeni denklemimizi A olarak elde ederiz? 11mod(28) burada A, 95'tir
- Şimdi bunu denklem 3 ile birleştirmeye çalışıyoruz ve benzer bir yöntemle A ? 235mod(252) burada A = 2503
- Ve son olarak bunu denklem 4 ile birleştirdiğimizde A ? 1243mod(2772) burada A = 59455 ve x = 1243
2772'nin 4 * 7 * 9 * 11'e eşit olduğunu görüyoruz. Böylece son denklem için x'in değerini bulduk. Başvurabilirsiniz Genişletilmiş Öklid Algoritması Ve Modüler çarpımsal ters Bu konularla ilgili ekstra bilgi için.
C++// C++ program to combine modular equations // using Chinese Remainder Theorem #include using namespace std; // function that implements Extended euclidean // algorithm vector<int> extended_euclidean(int aint b){ if(a == 0){ vector<int> temp; temp.push_back(b); temp.push_back(0); temp.push_back(1); return temp; } else{ vector<int> temp(3); temp= extended_euclidean(b % a a); int g = temp[0]; int y = temp[1]; int x = temp[2]; temp[0] = g; temp[1] = x - ((b/a) * y); temp[2] = y; return temp; } vector<int> temp; return temp; } // modular inverse driver function int modinv(int aint m){ vector<int> temp(3); temp = extended_euclidean(a m); int g = temp[0]; int x = temp[1]; int y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. int ans = x - (floor(x/(float)m) * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations int crt(vector<int> &mvector<int> & x) { // We run this loop while the list of // remainders has length greater than 1 while(1) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 int var1 = (modinv(m[1]m[0])); int var2 = (modinv(m[0]m[1]) ); // cout << var1 << ' ' << var2 << endl; int temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining int temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.erase(x.begin()); x.erase(x.begin()); x.insert(x.begin() temp1%temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.erase(m.begin()); m.erase(m.begin()); m.insert(m.begin() temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.size()== 1){ break; } } // returns the remainder of the final equation return x[0]; } // driver segment int main(){ vector<int> m = {4 7 9 11}; vector<int> x = {3 4 1 0}; cout << crt(m x) << endl; return 0; } // The code is contributed by Gautam goel (gautamgoe962)
Java // Java program to implement the Chinese Remainder Theorem import java.util.ArrayList; import java.math.BigInteger; public class ChineseRemainderTheorem { // Function to calculate the modular inverse of a and m public static BigInteger modinv(BigInteger a BigInteger m) { BigInteger m0 = m; BigInteger y = BigInteger.ZERO; BigInteger x = BigInteger.ONE; if (m.equals(BigInteger.ONE)) return BigInteger.ZERO; while (a.compareTo(BigInteger.ONE) == 1) { BigInteger q = a.divide(m); BigInteger t = m; m = a.mod(m); a = t; t = y; y = x.subtract(q.multiply(y)); x = t; } if (x.compareTo(BigInteger.ZERO) == -1) x = x.add(m0); return x; } // Function to implement the Chinese Remainder Theorem public static BigInteger crt(ArrayList<BigInteger> m ArrayList<BigInteger> x) { BigInteger M = BigInteger.ONE; for (int i = 0; i < m.size(); i++) { M = M.multiply(m.get(i)); } BigInteger result = BigInteger.ZERO; for (int i = 0; i < m.size(); i++) { BigInteger Mi = M.divide(m.get(i)); BigInteger MiInv = modinv(Mi m.get(i)); result = result.add(x.get(i).multiply(Mi).multiply(MiInv)); } return result.mod(M); } public static void main(String[] args) { ArrayList<BigInteger> m = new ArrayList<>(); ArrayList<BigInteger> x = new ArrayList<>(); m.add(BigInteger.valueOf(4)); m.add(BigInteger.valueOf(7)); m.add(BigInteger.valueOf(9)); m.add(BigInteger.valueOf(11)); x.add(BigInteger.valueOf(3)); x.add(BigInteger.valueOf(4)); x.add(BigInteger.valueOf(1)); x.add(BigInteger.valueOf(0)); System.out.println(crt(m x)); } } // This code is contributed by Vikram_Shirsat
Python # Python 2.x program to combine modular equations # using Chinese Remainder Theorem # function that implements Extended euclidean # algorithm def extended_euclidean(a b): if a == 0: return (b 0 1) else: g y x = extended_euclidean(b % a a) return (g x - (b // a) * y y) # modular inverse driver function def modinv(a m): g x y = extended_euclidean(a m) return x % m # function implementing Chinese remainder theorem # list m contains all the modulii # list x contains the remainders of the equations def crt(m x): # We run this loop while the list of # remainders has length greater than 1 while True: # temp1 will contain the new value # of A. which is calculated according # to the equation m1' * m1 * x0 + m0' # * m0 * x1 temp1 = modinv(m[1]m[0]) * x[0] * m[1] + modinv(m[0]m[1]) * x[1] * m[0] # temp2 contains the value of the modulus # in the new equation which will be the # product of the modulii of the two # equations that we are combining temp2 = m[0] * m[1] # we then remove the first two elements # from the list of remainders and replace # it with the remainder value which will # be temp1 % temp2 x.remove(x[0]) x.remove(x[0]) x = [temp1 % temp2] + x # we then remove the first two values from # the list of modulii as we no longer require # them and simply replace them with the new # modulii that we calculated m.remove(m[0]) m.remove(m[0]) m = [temp2] + m # once the list has only one element left # we can break as it will only contain # the value of our final remainder if len(x) == 1: break # returns the remainder of the final equation return x[0] # driver segment m = [4 7 9 11] x = [3 4 1 0] print crt(m x)
C# using System; using System.Collections; using System.Collections.Generic; using System.Linq; // C# program to combine modular equations // using Chinese Remainder Theorem class HelloWorld { // function that implements Extended euclidean // algorithm public static List<int> extended_euclidean(int aint b){ if(a == 0){ List<int> temp = new List<int>(); temp.Add(b); temp.Add(0); temp.Add(1); return temp; } else{ List<int> temp = new List<int>(); temp.Add(0); temp.Add(0); temp.Add(0); temp= extended_euclidean(b % a a); int g = temp[0]; int y = temp[1]; int x = temp[2]; temp[0] = g; temp[1] = x - ((b/a) * y); temp[2] = y; return temp; } List<int> temp1 = new List<int>(); return temp1; } // modular inverse driver function public static double modinv(int aint m){ List<int> temp = new List<int>(); temp.Add(0); temp.Add(0); temp.Add(0); temp = extended_euclidean(a m); int g = temp[0]; int x = temp[1]; int y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. double val = Math.Floor(((double)x/(double)m)); double ans = x - (val * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations public static int crt(List<int> mList<int> x) { // We run this loop while the list of // remainders has length greater than 1 while(true) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 double var1 = (modinv(m[1]m[0])); double var2 = (modinv(m[0]m[1])); // cout << var1 << ' ' << var2 << endl; double temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining int temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.RemoveAt(0); x.RemoveAt(0); x.Insert(0 (int)temp1%(int)temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.RemoveAt(0); m.RemoveAt(0); m.Insert(0 temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.Count == 1){ break; } } // returns the remainder of the final equation return x[0]; } static void Main() { List<int> m = new List<int>(){ 4 7 9 11 }; List<int> x = new List<int> (){ 3 4 1 0 }; Console.WriteLine(crt(m x)); } } // The code is contributed by Nidhi goel.
JavaScript // JavaScript program to combine modular equations // using Chinese Remainder Theorem // function that implements Extended euclidean // algorithm function extended_euclidean(a b){ if(a == 0){ let temp = [b 0 1]; return temp; } else{ let temp= extended_euclidean(b % a a); let g = temp[0]; let y = temp[1]; let x = temp[2]; temp[0] = g; temp[1] = x - (Math.floor(b/a) * y); temp[2] = y; return temp; } let temp; return temp; } // modular inverse driver function function modinv(a m){ let temp = extended_euclidean(a m); let g = temp[0]; let x = temp[1]; let y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. let ans = x - (Math.floor(x/m) * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations function crt(m x) { // We run this loop while the list of // remainders has length greater than 1 while(1) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 let var1 = (modinv(m[1]m[0])); let var2 = (modinv(m[0]m[1]) ); // cout << var1 << ' ' << var2 << endl; let temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining let temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.shift(); x.shift(); x.unshift(temp1 % temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.shift(); m.shift(); m.unshift(temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.length== 1){ break; } } // returns the remainder of the final equation return x[0]; } // driver segment let m = [4 7 9 11]; let x = [3 4 1 0]; console.log(crt(m x)); // The code is contributed by phasing17
Çıkış:
1243
Zaman Karmaşıklığı: O(l) burada l, kalan listesinin boyutudur.
Uzay Karmaşıklığı: O(1) fazladan boşluk kullanmıyoruz.
Bu teorem ve algoritmanın mükemmel uygulamaları vardır. Çok yararlı bir uygulama hesaplamadırNCR% m burada m bir asal sayı değildir ve Lucas Teoremi doğrudan uygulanamaz. Böyle bir durumda m'nin asal çarpanlarını hesaplayabilir ve asal çarpanları modül olarak tek tek kullanabiliriz.NCRLucas Teoremi'ni kullanarak hesaplayabileceğimiz ve daha sonra elde edilen denklemleri yukarıda gösterilen Çin Kalan Teoremini kullanarak birleştirebileceğimiz % m denklemi.
Test Oluştur