Pozitif bir N sayısı verildiğinde, minimum adım sayısında 1'e ulaşmamız gerekir; burada bir adım, N'yi (N-1)'e dönüştürmek veya N'yi daha büyük bölenlerden birine dönüştürmek olarak tanımlanır.
Resmi olarak eğer N'deysek 1 adımda (N - 1)'e ulaşabiliriz veya N = u*v ise u > 1 ve v > 1 olan max(u v)'ye ulaşabiliriz.
Örnekler:
Input : N = 17 Output : 4 We can reach to 1 in 4 steps as shown below 17 -> 16(from 17 - 1) -> 4(from 4 * 4) -> 2(from 2 * 2) -> 1(from 2 - 1) Input : N = 50 Output : 5 We can reach to 1 in 5 steps as shown below 50 -> 10(from 5 * 10) -> 5(from 2 * 5) -> 4(from 5 - 1) -> 2(from 2 *2) -> 1(from 2 - 1)
Bu sorunu genişlik öncelikli aramayı kullanarak çözebiliriz çünkü seviye seviye çalışır, böylece N için bir sonraki seviyenin (N - 1) ve N'nin daha büyük uygun çarpanlarını içerdiği minimum sayıda adımda 1'e ulaşacağız.
BFS prosedürünün tamamı şu şekilde olacaktır: Öncelikle N'yi 0 adımlarıyla veri kuyruğuna iteceğiz, ardından her seviyede bir sonraki seviye elemanlarını önceki seviye elemanlarından 1 adım daha fazla iteceğiz. Bu şekilde kuyruktan 1 çıktığında, minimum sayıda adım içerecek ve bu da nihai sonucumuz olacaktır.
Aşağıdaki kodda, N'den itibaren değeri ve adımları saklayan 'veri' tipinde bir yapının kuyruğu kullanılır, kendimizi aynı öğeyi bir kereden fazla itmekten kurtarmak için başka bir tamsayı tipi seti kullanılır, bu da sonsuz bir döngüye yol açabilir. Yani her adımda değeri kuyruğa ittikten sonra sete iteriz, böylece değer birden fazla ziyaret edilmez.
Daha iyi anlamak için lütfen aşağıdaki koda bakın
mylivericketC++
// C++ program to get minimum step to reach 1 // under given constraints #include using namespace std; // structure represent one node in queue struct data { int val; int steps; data(int val int steps) : val(val) steps(steps) {} }; // method returns minimum step to reach one int minStepToReachOne(int N) { queue<data> q; q.push(data(N 0)); // set is used to visit numbers so that they // won't be pushed in queue again set<int> st; // loop until we reach to 1 while (!q.empty()) { data t = q.front(); q.pop(); // if current data value is 1 return its // steps from N if (t.val == 1) return t.steps; // check curr - 1 only if it not visited yet if (st.find(t.val - 1) == st.end()) { q.push(data(t.val - 1 t.steps + 1)); st.insert(t.val - 1); } // loop from 2 to sqrt(value) for its divisors for (int i = 2; i*i <= t.val; i++) { // check divisor only if it is not visited yet // if i is divisor of val then val / i will // be its bigger divisor if (t.val % i == 0 && st.find(t.val / i) == st.end()) { q.push(data(t.val / i t.steps + 1)); st.insert(t.val / i); } } } } // Driver code to test above methods int main() { int N = 17; cout << minStepToReachOne(N) << endl; }
Java // Java program to get minimum step to reach 1 // under given constraints import java.util.*; class GFG { // structure represent one node in queue static class data { int val; int steps; public data(int val int steps) { this.val = val; this.steps = steps; } }; // method returns minimum step to reach one static int minStepToReachOne(int N) { Queue<data> q = new LinkedList<>(); q.add(new data(N 0)); // set is used to visit numbers so that they // won't be pushed in queue again HashSet<Integer> st = new HashSet<Integer>(); // loop until we reach to 1 while (!q.isEmpty()) { data t = q.peek(); q.remove(); // if current data value is 1 return its // steps from N if (t.val == 1) return t.steps; // check curr - 1 only if it not visited yet if (!st.contains(t.val - 1)) { q.add(new data(t.val - 1 t.steps + 1)); st.add(t.val - 1); } // loop from 2 to Math.sqrt(value) for its divisors for (int i = 2; i*i <= t.val; i++) { // check divisor only if it is not visited yet // if i is divisor of val then val / i will // be its bigger divisor if (t.val % i == 0 && !st.contains(t.val / i) ) { q.add(new data(t.val / i t.steps + 1)); st.add(t.val / i); } } } return -1; } // Driver code public static void main(String[] args) { int N = 17; System.out.print(minStepToReachOne(N) +'n'); } } // This code is contributed by 29AjayKumar
Python3 # Python3 program to get minimum step # to reach 1 under given constraints # Structure represent one node in queue class data: def __init__(self val steps): self.val = val self.steps = steps # Method returns minimum step to reach one def minStepToReachOne(N): q = [] q.append(data(N 0)) # Set is used to visit numbers # so that they won't be pushed # in queue again st = set() # Loop until we reach to 1 while (len(q)): t = q.pop(0) # If current data value is 1 # return its steps from N if (t.val == 1): return t.steps # Check curr - 1 only if # it not visited yet if not (t.val - 1) in st: q.append(data(t.val - 1 t.steps + 1)) st.add(t.val - 1) # Loop from 2 to Math.sqrt(value) # for its divisors for i in range(2 int((t.val) ** 0.5) + 1): # Check divisor only if it is not # visited yet if i is divisor of val # then val / i will be its bigger divisor if (t.val % i == 0 and (t.val / i) not in st): q.append(data(t.val / i t.steps + 1)) st.add(t.val / i) return -1 # Driver code N = 17 print(minStepToReachOne(N)) # This code is contributed by phasing17
C# // C# program to get minimum step to reach 1 // under given constraints using System; using System.Collections.Generic; class GFG { // structure represent one node in queue class data { public int val; public int steps; public data(int val int steps) { this.val = val; this.steps = steps; } }; // method returns minimum step to reach one static int minStepToReachOne(int N) { Queue<data> q = new Queue<data>(); q.Enqueue(new data(N 0)); // set is used to visit numbers so that they // won't be pushed in queue again HashSet<int> st = new HashSet<int>(); // loop until we reach to 1 while (q.Count != 0) { data t = q.Peek(); q.Dequeue(); // if current data value is 1 return its // steps from N if (t.val == 1) return t.steps; // check curr - 1 only if it not visited yet if (!st.Contains(t.val - 1)) { q.Enqueue(new data(t.val - 1 t.steps + 1)); st.Add(t.val - 1); } // loop from 2 to Math.Sqrt(value) for its divisors for (int i = 2; i*i <= t.val; i++) { // check divisor only if it is not visited yet // if i is divisor of val then val / i will // be its bigger divisor if (t.val % i == 0 && !st.Contains(t.val / i) ) { q.Enqueue(new data(t.val / i t.steps + 1)); st.Add(t.val / i); } } } return -1; } // Driver code public static void Main(String[] args) { int N = 17; Console.Write(minStepToReachOne(N) +'n'); } } // This code is contributed by 29AjayKumar
JavaScript <script> // Javascript program to get minimum step // to reach 1 under given constraints // Structure represent one node in queue class data { constructor(val steps) { this.val = val; this.steps = steps; } } // Method returns minimum step to reach one function minStepToReachOne(N) { let q = []; q.push(new data(N 0)); // Set is used to visit numbers // so that they won't be pushed // in queue again let st = new Set(); // Loop until we reach to 1 while (q.length != 0) { let t = q.shift(); // If current data value is 1 // return its steps from N if (t.val == 1) return t.steps; // Check curr - 1 only if // it not visited yet if (!st.has(t.val - 1)) { q.push(new data(t.val - 1 t.steps + 1)); st.add(t.val - 1); } // Loop from 2 to Math.sqrt(value) // for its divisors for(let i = 2; i*i <= t.val; i++) { // Check divisor only if it is not // visited yet if i is divisor of val // then val / i will be its bigger divisor if (t.val % i == 0 && !st.has(t.val / i)) { q.push(new data(t.val / i t.steps + 1)); st.add(t.val / i); } } } return -1; } // Driver code let N = 17; document.write(minStepToReachOne(N) + '
'); // This code is contributed by rag2127 </script>
Çıkış:
4