Bağlantılı ve yönsüz bir grafik verildiğinde, bu grafiğin yayılan ağacı, bir ağaç olan ve tüm köşeleri birbirine bağlayan bir alt grafiktir. Tek bir grafiğin birçok farklı kapsayan ağacı olabilir. Ağırlıklı bağlantılı ve yönlendirilmemiş bir grafik için minimum çarpım kapsayan ağaç, ağırlık çarpımı diğer tüm kapsayan ağaçların ağırlık çarpımından daha az veya ona eşit olan bir kapsayan ağaçtır. Yayılan bir ağacın ağırlık çarpımı, yayılan ağacın her bir kenarına karşılık gelen ağırlıkların çarpımıdır. Basitlik açısından verilen grafiğin tüm ağırlıkları pozitif olacaktır.
Örnekler:
dolgu css

Minimum Product that we can obtain is 180 for above graph by choosing edges 0-1 1-2 0-3 and 1-4
Bu problem Kruskal () gibi standart minimum kapsayan ağaç algoritmaları kullanılarak çözülebilir. https://www.geeksforgeeks.org/dsa/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/ )Ve ilkel algoritmasıdır ancak bu algoritmaları kullanmak için grafiğimizi değiştirmemiz gerekir. Minimum yayılan ağaç algoritmaları toplam ağırlık toplamını en aza indirmeye çalışır, burada ağırlıkların toplam çarpımını en aza indirmemiz gerekir. özelliğini kullanabiliriz logaritmalar Bu sorunun üstesinden gelmek için.
bildiğimiz gibi
log(w1* w2 * w3 * …. * wN) = log(w1) + log(w2) + log(w3) ….. + log(wN)
Grafiğin her ağırlığını log değeriyle değiştirebiliriz, ardından log(wi) toplamını en aza indirmeye çalışacak ve dolayısıyla ağırlık çarpımını en aza indirecek herhangi bir minimum yayılan ağaç algoritması uygularız.
Örneğin grafikte adımlar aşağıdaki şemada gösterilmiştir

json'a java dizesi
Aşağıdaki kodda önce verilen giriş grafiğinden log grafiğini oluşturduk, daha sonra bu grafik, ağacın toplam ağırlıklarının toplamını en aza indirecek olan prim'in MST algoritmasına girdi olarak verildi. Değiştirilen grafiğin ağırlıkları gerçek giriş grafiğinin logaritması olduğundan, aslında yayılan ağacın ağırlıklarının çarpımını en aza indiriyoruz.
// A C++ program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph #include // Number of vertices in the graph #define V 5 // A utility function to find the vertex with minimum // key value from the set of vertices not yet included // in MST int minKey(int key[] bool mstSet[]) { // Initialize min value int min = INT_MAX min_index; for (int v = 0; v < V; v++) if (mstSet[v] == false && key[v] < min) min = key[v] min_index = v; return min_index; } // A utility function to print the constructed MST // stored in parent[] and print Minimum Obtainable // product int printMST(int parent[] int n int graph[V][V]) { printf('Edge Weightn'); int minProduct = 1; for (int i = 1; i < V; i++) { printf('%d - %d %d n' parent[i] i graph[i][parent[i]]); minProduct *= graph[i][parent[i]]; } printf('Minimum Obtainable product is %dn' minProduct); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations void primMST(int inputGraph[V][V] double logGraph[V][V]) { int parent[V]; // Array to store constructed MST int key[V]; // Key values used to pick minimum // weight edge in cut bool mstSet[V]; // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for (int i = 0; i < V; i++) key[i] = INT_MAX mstSet[i] = false; // Always include first 1st vertex in MST. key[0] = 0; // Make key 0 so that this vertex is // picked as first vertex parent[0] = -1; // First node is always root of MST // The MST will have V vertices for (int count = 0; count < V - 1; count++) { // Pick the minimum key vertex from the set of // vertices not yet included in MST int u = minKey(key mstSet); // Add the picked vertex to the MST Set mstSet[u] = true; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for (int v = 0; v < V; v++) // logGraph[u][v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u][v] is // smaller than key[v] if (logGraph[u][v] > 0 && mstSet[v] == false && logGraph[u][v] < key[v]) parent[v] = u key[v] = logGraph[u][v]; } // print the constructed MST printMST(parent V inputGraph); } // Method to get minimum product spanning tree void minimumProductMST(int graph[V][V]) { double logGraph[V][V]; // Constructing logGraph from original graph for (int i = 0; i < V; i++) { for (int j = 0; j < V; j++) { if (graph[i][j] > 0) logGraph[i][j] = log(graph[i][j]); else logGraph[i][j] = 0; } } // Applying standard Prim's MST algorithm on // Log graph. primMST(graph logGraph); } // driver program to test above function int main() { /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ int graph[V][V] = { { 0 2 0 6 0 } { 2 0 3 8 5 } { 0 3 0 0 7 } { 6 8 0 0 9 } { 0 5 7 9 0 } }; // Print the solution minimumProductMST(graph); return 0; }
Java // A Java program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph import java.util.*; class GFG { // Number of vertices in the graph static int V = 5; // A utility function to find the vertex with minimum // key value from the set of vertices not yet included // in MST static int minKey(int key[] boolean[] mstSet) { // Initialize min value int min = Integer.MAX_VALUE min_index = 0; for (int v = 0; v < V; v++) { if (mstSet[v] == false && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } // A utility function to print the constructed MST // stored in parent[] and print Minimum Obtainable // product static void printMST(int parent[] int n int graph[][]) { System.out.printf('Edge Weightn'); int minProduct = 1; for (int i = 1; i < V; i++) { System.out.printf('%d - %d %d n' parent[i] i graph[i][parent[i]]); minProduct *= graph[i][parent[i]]; } System.out.printf('Minimum Obtainable product is %dn' minProduct); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations static void primMST(int inputGraph[][] double logGraph[][]) { int[] parent = new int[V]; // Array to store constructed MST int[] key = new int[V]; // Key values used to pick minimum // weight edge in cut boolean[] mstSet = new boolean[V]; // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for (int i = 0; i < V; i++) { key[i] = Integer.MAX_VALUE; mstSet[i] = false; } // Always include first 1st vertex in MST. key[0] = 0; // Make key 0 so that this vertex is // picked as first vertex parent[0] = -1; // First node is always root of MST // The MST will have V vertices for (int count = 0; count < V - 1; count++) { // Pick the minimum key vertex from the set of // vertices not yet included in MST int u = minKey(key mstSet); // Add the picked vertex to the MST Set mstSet[u] = true; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for (int v = 0; v < V; v++) // logGraph[u][v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u][v] is // smaller than key[v] { if (logGraph[u][v] > 0 && mstSet[v] == false && logGraph[u][v] < key[v]) { parent[v] = u; key[v] = (int)logGraph[u][v]; } } } // print the constructed MST printMST(parent V inputGraph); } // Method to get minimum product spanning tree static void minimumProductMST(int graph[][]) { double[][] logGraph = new double[V][V]; // Constructing logGraph from original graph for (int i = 0; i < V; i++) { for (int j = 0; j < V; j++) { if (graph[i][j] > 0) { logGraph[i][j] = Math.log(graph[i][j]); } else { logGraph[i][j] = 0; } } } // Applying standard Prim's MST algorithm on // Log graph. primMST(graph logGraph); } // Driver code public static void main(String[] args) { /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ int graph[][] = { { 0 2 0 6 0 } { 2 0 3 8 5 } { 0 3 0 0 7 } { 6 8 0 0 9 } { 0 5 7 9 0 } }; // Print the solution minimumProductMST(graph); } } // This code has been contributed by 29AjayKumar
Python3 # A Python3 program for getting minimum # product spanning tree The program is # for adjacency matrix representation # of the graph import math # Number of vertices in the graph V = 5 # A utility function to find the vertex # with minimum key value from the set # of vertices not yet included in MST def minKey(key mstSet): # Initialize min value min = 10000000 min_index = 0 for v in range(V): if (mstSet[v] == False and key[v] < min): min = key[v] min_index = v return min_index # A utility function to print the constructed # MST stored in parent[] and print Minimum # Obtainable product def printMST(parent n graph): print('Edge Weight') minProduct = 1 for i in range(1 V): print('{} - {} {} '.format(parent[i] i graph[i][parent[i]])) minProduct *= graph[i][parent[i]] print('Minimum Obtainable product is {}'.format( minProduct)) # Function to construct and print MST for # a graph represented using adjacency # matrix representation inputGraph is # sent for printing actual edges and # logGraph is sent for actual MST # operations def primMST(inputGraph logGraph): # Array to store constructed MST parent = [0 for i in range(V)] # Key values used to pick minimum key = [10000000 for i in range(V)] # weight edge in cut # To represent set of vertices not mstSet = [False for i in range(V)] # Yet included in MST # Always include first 1st vertex in MST # Make key 0 so that this vertex is key[0] = 0 # Picked as first vertex # First node is always root of MST parent[0] = -1 # The MST will have V vertices for count in range(0 V - 1): # Pick the minimum key vertex from # the set of vertices not yet # included in MST u = minKey(key mstSet) # Add the picked vertex to the MST Set mstSet[u] = True # Update key value and parent index # of the adjacent vertices of the # picked vertex. Consider only those # vertices which are not yet # included in MST for v in range(V): # logGraph[u][v] is non zero only # for adjacent vertices of m # mstSet[v] is false for vertices # not yet included in MST. Update # the key only if logGraph[u][v] is # smaller than key[v] if (logGraph[u][v] > 0 and mstSet[v] == False and logGraph[u][v] < key[v]): parent[v] = u key[v] = logGraph[u][v] # Print the constructed MST printMST(parent V inputGraph) # Method to get minimum product spanning tree def minimumProductMST(graph): logGraph = [[0 for j in range(V)] for i in range(V)] # Constructing logGraph from # original graph for i in range(V): for j in range(V): if (graph[i][j] > 0): logGraph[i][j] = math.log(graph[i][j]) else: logGraph[i][j] = 0 # Applying standard Prim's MST algorithm # on Log graph. primMST(graph logGraph) # Driver code if __name__=='__main__': ''' Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 ''' graph = [ [ 0 2 0 6 0 ] [ 2 0 3 8 5 ] [ 0 3 0 0 7 ] [ 6 8 0 0 9 ] [ 0 5 7 9 0 ] ] # Print the solution minimumProductMST(graph) # This code is contributed by rutvik_56
C# // C# program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph using System; class GFG { // Number of vertices in the graph static int V = 5; // A utility function to find the vertex with minimum // key value from the set of vertices not yet included // in MST static int minKey(int[] key Boolean[] mstSet) { // Initialize min value int min = int.MaxValue min_index = 0; for (int v = 0; v < V; v++) { if (mstSet[v] == false && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } // A utility function to print the constructed MST // stored in parent[] and print Minimum Obtainable // product static void printMST(int[] parent int n int[ ] graph) { Console.Write('Edge Weightn'); int minProduct = 1; for (int i = 1; i < V; i++) { Console.Write('{0} - {1} {2} n' parent[i] i graph[i parent[i]]); minProduct *= graph[i parent[i]]; } Console.Write('Minimum Obtainable product is {0}n' minProduct); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations static void primMST(int[ ] inputGraph double[ ] logGraph) { int[] parent = new int[V]; // Array to store constructed MST int[] key = new int[V]; // Key values used to pick minimum // weight edge in cut Boolean[] mstSet = new Boolean[V]; // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for (int i = 0; i < V; i++) { key[i] = int.MaxValue; mstSet[i] = false; } // Always include first 1st vertex in MST. key[0] = 0; // Make key 0 so that this vertex is // picked as first vertex parent[0] = -1; // First node is always root of MST // The MST will have V vertices for (int count = 0; count < V - 1; count++) { // Pick the minimum key vertex from the set of // vertices not yet included in MST int u = minKey(key mstSet); // Add the picked vertex to the MST Set mstSet[u] = true; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for (int v = 0; v < V; v++) // logGraph[u v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u v] is // smaller than key[v] { if (logGraph[u v] > 0 && mstSet[v] == false && logGraph[u v] < key[v]) { parent[v] = u; key[v] = (int)logGraph[u v]; } } } // print the constructed MST printMST(parent V inputGraph); } // Method to get minimum product spanning tree static void minimumProductMST(int[ ] graph) { double[ ] logGraph = new double[V V]; // Constructing logGraph from original graph for (int i = 0; i < V; i++) { for (int j = 0; j < V; j++) { if (graph[i j] > 0) { logGraph[i j] = Math.Log(graph[i j]); } else { logGraph[i j] = 0; } } } // Applying standard Prim's MST algorithm on // Log graph. primMST(graph logGraph); } // Driver code public static void Main(String[] args) { /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ int[ ] graph = { { 0 2 0 6 0 } { 2 0 3 8 5 } { 0 3 0 0 7 } { 6 8 0 0 9 } { 0 5 7 9 0 } }; // Print the solution minimumProductMST(graph); } } /* This code contributed by PrinciRaj1992 */
JavaScript <script> // A Javascript program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph // Number of vertices in the graph let V = 5; // A utility function to find the vertex with minimum // key value from the set of vertices not yet included // in MST function minKey(keymstSet) { // Initialize min value let min = Number.MAX_VALUE min_index = 0; for (let v = 0; v < V; v++) { if (mstSet[v] == false && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } // A utility function to print the constructed MST // stored in parent[] and print Minimum Obtainable // product function printMST(parentngraph) { document.write('Edge Weight
'); let minProduct = 1; for (let i = 1; i < V; i++) { document.write( parent[i]+' - '+ i+' ' +graph[i][parent[i]]+'
'); minProduct *= graph[i][parent[i]]; } document.write('Minimum Obtainable product is ' minProduct+'
'); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations function primMST(inputGraphlogGraph) { let parent = new Array(V); // Array to store constructed MST let key = new Array(V); // Key values used to pick minimum // weight edge in cut let mstSet = new Array(V); // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for (let i = 0; i < V; i++) { key[i] = Number.MAX_VALUE; mstSet[i] = false; } // Always include first 1st vertex in MST. key[0] = 0; // Make key 0 so that this vertex is // picked as first vertex parent[0] = -1; // First node is always root of MST // The MST will have V vertices for (let count = 0; count < V - 1; count++) { // Pick the minimum key vertex from the set of // vertices not yet included in MST let u = minKey(key mstSet); // Add the picked vertex to the MST Set mstSet[u] = true; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for (let v = 0; v < V; v++) // logGraph[u][v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u][v] is // smaller than key[v] { if (logGraph[u][v] > 0 && mstSet[v] == false && logGraph[u][v] < key[v]) { parent[v] = u; key[v] = logGraph[u][v]; } } } // print the constructed MST printMST(parent V inputGraph); } // Method to get minimum product spanning tree function minimumProductMST(graph) { let logGraph = new Array(V); // Constructing logGraph from original graph for (let i = 0; i < V; i++) { logGraph[i]=new Array(V); for (let j = 0; j < V; j++) { if (graph[i][j] > 0) { logGraph[i][j] = Math.log(graph[i][j]); } else { logGraph[i][j] = 0; } } } // Applying standard Prim's MST algorithm on // Log graph. primMST(graph logGraph); } // Driver code /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ let graph = [ [ 0 2 0 6 0 ] [ 2 0 3 8 5 ] [ 0 3 0 0 7 ] [ 6 8 0 0 9 ] [ 0 5 7 9 0 ] ]; // Print the solution minimumProductMST(graph); // This code is contributed by rag2127 </script>
Çıkış:
arama motoru ve örnekler
Edge Weight 0 - 1 2 1 - 2 3 0 - 3 6 1 - 4 5 Minimum Obtainable product is 180
zaman karmaşıklığı Bu algoritmanın algoritması O(V2)'dir çünkü tüm köşeler üzerinde yinelenen iki iç içe for döngüsü vardır.
uzay karmaşıklığı Giriş grafiğini depolamak için V x V boyutunda 2 boyutlu bir dizi kullandığımız için bu algoritmanın değeri O(V2)'dir.