#practiceLinkDiv { görüntü: yok !önemli; }Bir sayının rakamlarını içeren bir dize verildi. Sayının içinde birçok aynı sürekli rakam bulunabilir. Görev, sayıyı yazmanın farklı yollarını saymaktır.
Örneğin, 8884441100'ün basitçe üçlü sekiz, üçlü dört, çift iki ve çift sıfır olarak yazılabileceğini düşünün. Ayrıca çift sekiz sekiz dört çift dört iki iki çift sıfır şeklinde de yazılabilir.
Örnekler:
Input : num = 100 Output : 2 The number 100 has only 2 possibilities 1) one zero zero 2) one double zero. Input : num = 11112 Output: 8 1 1 1 1 2 11 1 1 2 1 1 11 2 1 11 1 2 11 11 2 1 111 2 111 1 2 1111 2 Input : num = 8884441100 Output: 64 Input : num = 12345 Output: 1 Input : num = 11111 Output: 16Recommended Practice Bir Sayıyı Hecele Deneyin!
Bu basit bir permütasyon ve kombinasyon problemidir. 11112 sorusunda verilen örnek test durumunu ele alırsak. Cevap, 1111'in olası alt dizilerinin sayısına bağlıdır. '1111'in olası alt dizilerinin sayısı 2^3 = 8'dir çünkü 4 - 1 = 3 ayırıcı '|' kombinasyonlarının sayısıdır. dizenin iki karakteri arasında (dize tarafından temsil edilen sayının rakamları): '1|1|1|1'. Kombinasyonlarımız belirli bir 1'i seçip seçmememize bağlı olacağından ve '2' için yalnızca bir olasılık 2^0 = 1 olacağından '11112'nin cevabı 8*1 = 8 olacaktır.
Dolayısıyla yaklaşım, dizedeki belirli sürekli rakamı saymak ve 2^(count-1) değerini önceki sonuçla çarpmaktır.
C++// C++ program to count number of ways we // can spell a number #include using namespace std; typedef long long int ll; // Function to calculate all possible spells of // a number with repeated digits // num --> string which is favourite number ll spellsCount(string num) { int n = num.length(); // final count of total possible spells ll result = 1; // iterate through complete number for (int i=0; i<n; i++) { // count contiguous frequency of particular // digit num[i] int count = 1; while (i < n-1 && num[i+1] == num[i]) { count++; i++; } // Compute 2^(count-1) and multiply with result result = result * pow(2 count-1); } return result; } // Driver program to run the case int main() { string num = '11112'; cout << spellsCount(num); return 0; }
Java // Java program to count number of ways we // can spell a number import java.io.*; class GFG { // Function to calculate all possible // spells of a number with repeated digits // num --> string which is favourite number static long spellsCount(String num) { int n = num.length(); // final count of total possible spells long result = 1; // iterate through complete number for (int i = 0; i < n; i++) { // count contiguous frequency of // particular digit num[i] int count = 1; while (i < n - 1 && num.charAt(i + 1) == num.charAt(i)) { count++; i++; } // Compute 2^(count-1) and multiply // with result result = result * (long)Math.pow(2 count - 1); } return result; } public static void main(String[] args) { String num = '11112'; System.out.print(spellsCount(num)); } } // This code is contributed by Anant Agarwal.
Python3 # Python3 program to count number of # ways we can spell a number # Function to calculate all possible # spells of a number with repeated # digits num --> string which is # favourite number def spellsCount(num): n = len(num); # final count of total # possible spells result = 1; # iterate through complete # number i = 0; while(i<n): # count contiguous frequency # of particular digit num[i] count = 1; while (i < n - 1 and num[i + 1] == num[i]): count += 1; i += 1; # Compute 2^(count-1) and # multiply with result result = result * int(pow(2 count - 1)); i += 1; return result; # Driver Code num = '11112'; print(spellsCount(num)); # This code is contributed # by mits
C# // C# program to count number of ways we // can spell a number using System; class GFG { // Function to calculate all possible // spells of a number with repeated // digits num --> string which is // favourite number static long spellsCount(String num) { int n = num.Length; // final count of total possible // spells long result = 1; // iterate through complete number for (int i = 0; i < n; i++) { // count contiguous frequency of // particular digit num[i] int count = 1; while (i < n - 1 && num[i + 1] == num[i]) { count++; i++; } // Compute 2^(count-1) and multiply // with result result = result * (long)Math.Pow(2 count - 1); } return result; } // Driver code public static void Main() { String num = '11112'; Console.Write(spellsCount(num)); } } // This code is contributed by nitin mittal.
PHP // PHP program to count // number of ways we // can spell a number // Function to calculate // all possible spells of // a number with repeated // digits num --> string // which is favourite number function spellsCount($num) { $n = strlen($num); // final count of total // possible spells $result = 1; // iterate through // complete number for ($i = 0; $i < $n; $i++) { // count contiguous frequency // of particular digit num[i] $count = 1; while ($i < $n - 1 && $num[$i + 1] == $num[$i]) { $count++; $i++; } // Compute 2^(count-1) and // multiply with result $result = $result * pow(2 $count - 1); } return $result; } // Driver Code $num = '11112'; echo spellsCount($num); // This code is contributed // by nitin mittal. ?> JavaScript <script> // Javascript program to count number of // ways we can spell a number // Function to calculate all possible // spells of a number with repeated // digits num --> string which is // favourite number function spellsCount(num) { let n = num.length; // Final count of total possible // spells let result = 1; // Iterate through complete number for (let i = 0; i < n; i++) { // Count contiguous frequency of // particular digit num[i] let count = 1; while (i < n - 1 && num[i + 1] == num[i]) { count++; i++; } // Compute 2^(count-1) and multiply // with result result = result * Math.pow(2 count - 1); } return result; } // Driver code let num = '11112'; document.write(spellsCount(num)); // This code is contributed by code_hunt </script>
Çıkış
8
Zaman Karmaşıklığı: O(n*log(n))
Yardımcı Alan: Ç(1)
Bu sorunu çözmek için başka bir yaklaşımınız varsa lütfen paylaşın.