Bir matris verildiğinde A boyutta NxN içindeki ters çevirme çiftlerinin sayısını bulmamız gerekiyor. Bir matristeki ters çevirme sayısı, aşağıdaki koşulları karşılayan çiftlerin sayısı olarak tanımlanır:
- X1? X2
- Ve1? Ve2
- A[x2][Ve2]< A[x1][Ve1]
Kısıtlamalar:
- 1? Aben? 109
- 1? N ? 103
Örnekler:
For simplicity let's take a 2x2 matrix : A = {{7 5} {3 1}}; The inversion pairs are : (7 5) (3 1) (7 3) (5 1) and (7 1) Output : 5 Bu sorunu çözmek için aşağıdakileri bilmemiz gerekir:
- İkili Dizine Alınmış Ağaç (BIT) kullanarak 1 boyutlu bir dizideki ters çevirme çiftlerinin sayısını bulma https://www.geeksforgeeks.org/dsa/inversion-count-in-array-using-bit/
- 2 boyutlu bit https://www.geeksforgeeks.org/dsa/two- Dimensional-binary-indexed-tree-or-fenwick-tree/
Bir matristeki ters çevirme çiftlerinin sayısını bulmamız gerektiğinden, yapmamız gereken ilk şey, matrisin elemanlarını başka bir dizide (örneğin v) depolamak ve v dizisini sıralamaktır, böylece sıralanmamış matrisin elemanlarını v ile karşılaştırabilir ve BIT kullanarak ters çevirme çiftlerinin sayısını bulabiliriz. Ancak elementlerin değerlerinin çok büyük olduğu (109) dolayısıyla matristeki elemanların değerlerini BIT'te indeks olarak kullanamayız. Bu nedenle 2D BIT'te elemanların konumunu indeks olarak kullanmamız gerekir.
Matrisin her elemanı için (-A[i][j] i j) demetini kullanacağız ve bunu 'v' diyen bir dizide saklayacağız. Daha sonra v'yi -A[i][j] değerine göre artan sırada sıralamamız gerekir, böylece matrisin en büyük elemanı 0 indeksinde ve en küçüğü v'nin son indeksinde depolanır. Şimdi sorun 1 boyutlu bir dizide ters çevirme çiftlerini bulmaya indirgenmiştir, bunun tek istisnası 2 boyutlu bir BIT kullanacağımızdır.
Burada A[i][j]'nin negatif değerlerini kullandığımızı unutmayın çünkü v'yi soldan sağa, yani matristeki en büyük sayıdan en küçüğüne doğru hareket ettireceğiz (çünkü BIT kullanarak 1 boyutlu bir dizide ters çevirme çiftlerini bulurken yaptığımız şey budur). Ayrıca pozitif değerler de kullanılabilir ve v'yi sağdan sola doğru hareket ettirerek nihai sonucun aynı kalmasını sağlayabilirsiniz.
Algoritma:
1. Initialize inv_pair_cnt = 0 which will store the number of inversion pairs. 2. Store the tuple (-A[i][j] i j) in an array say v where A[i][j] is the element of the matrix A at position (i j). 3. Sort the array v according to the first element of the tuple i.e. according to the value of -A[i][j]. 4. Traverse the array v and do the following : - Initialize an array say 'pairs' to store the position (i j) of the tuples of v. - while the current tuple of v and all its adjacent tuples whose first value i.e. -A[i][j] is same do - Push the current tuple's position pair (i j) into 'pairs'. - Add to inv_pair_cnt the number of elements which are less than the current element(i.e. A[i][j]) and lie on the right side in the sorted array v by calling the query operation of BIT and passing i and j as arguments. - For each position pair (i j) stored in the array 'pairs' update the position (i j) in the 2D BIT by 1. 5. Finally inv_pair_cnt will contain the number of inversion pairs.
Uygulama:
C++// C++ program to count the number of inversion // pairs in a 2D matrix #include using namespace std; // for simplicity we are taking N as 4 #define N 4 void update(int l int r int val int bit[][N + 1]) { for (int i = l; i <= N; i += i & -i) for (int j = r; j <= N; j += j & -j) bit[i][j] += val; } // function to find cumulative sum upto // index (l r) in the 2D BIT long long query(int l int r int bit[][N + 1]) { long long ret = 0; for (int i = l; i > 0; i -= i & -i) for (int j = r; j > 0; j -= j & -j) ret += bit[i][j]; return ret; } // function to count and return the number // of inversion pairs in the matrix long long countInversionPairs(int mat[][N]) { // the 2D bit array and initialize it with 0. int bit[N+1][N+1] = {0}; // v will store the tuple (-mat[i][j] i j) vector<pair<int pair<int int> > > v; // store the tuples in the vector v for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) v.push_back(make_pair(-mat[i][j] make_pair(i+1 j+1))); sort(v.begin() v.end()); // inv_pair_cnt will store the number of // inversion pairs long long inv_pair_cnt = 0; // traverse all the tuples of vector v int i = 0; while (i < v.size()) { int curr = i; vector<pair<int int> > pairs; while (curr < v.size() && (v[curr].first == v[i].first)) { // push the position of the current element in 'pairs' pairs.push_back(make_pair(v[curr].second.first v[curr].second.second)); inv_pair_cnt += query(v[curr].second.first v[curr].second.second bit); curr++; } vector<pair<int int> >::iterator it; // traverse the 'pairs' vector for (it = pairs.begin(); it != pairs.end(); ++it) { int x = it->first; int y = it->second; // update the position (x y) by 1 update(x y 1 bit); } i = curr; } return inv_pair_cnt; } // Driver program int main() { int mat[N][N] = { { 4 7 2 9 } { 6 4 1 7 } { 5 3 8 1 } { 3 2 5 6 } }; long long inv_pair_cnt = countInversionPairs(mat); cout << 'The number of inversion pairs are : ' << inv_pair_cnt << endl; return 0; }
Python3 # Python3 program to count the number of inversion # pairs in a 2D matrix # for simplicity we are taking N as 4 N = 4 # Function to update a 2D BIT. It updates the # value of bit[l][r] by adding val to bit[l][r] def update(l r val bit): i = l while(i <= N): j = r while(j <= N): bit[i][j] += val j += j & -j i += i & -i # function to find cumulative sum upto # index (l r) in the 2D BIT def query(l r bit): ret = 0 i = l while(i > 0): j = r while(j > 0): ret += bit[i][j] j -= j & -j i -= i & -i return ret # function to count and return the number # of inversion pairs in the matrix def countInversionPairs(mat): # the 2D bit array and initialize it with 0. bit = [[0 for i in range(N + 1)] for j in range(N + 1)] # v will store the tuple (-mat[i][j] i j) v = [] # store the tuples in the vector v for i in range(N): for j in range(N): # Note that we are not using the pair # (0 0) because BIT update and query # operations are not done on index 0 v.append([-mat[i][j] [i + 1 j + 1]]) # sort the vector v according to the # first element of the tuple i.e. -mat[i][j] v.sort() # inv_pair_cnt will store the number of # inversion pairs inv_pair_cnt = 0 # traverse all the tuples of vector v i = 0 while (i < len(v)): curr = i # 'pairs' will store the position of each element # i.e. the pair (i j) of each tuple of the vector v pairs = [] # consider the current tuple in v and all its # adjacent tuples whose first value i.e. the # value of –mat[i][j] is same while (curr < len(v) and (v[curr][0] == v[i][0])): # push the position of the current element in 'pairs' pairs.append([v[curr][1][0] v[curr][1][1]]) # add the number of elements which are # less than the current element and lie on the right # side in the vector v inv_pair_cnt += query(v[curr][1][0] v[curr][1][1] bit) curr += 1 # traverse the 'pairs' vector for it in pairs: x = it[0] y = it[1] # update the position (x y) by 1 update(x y 1 bit) i = curr return inv_pair_cnt # Driver code mat = [[4 7 2 9 ][ 6 4 1 7 ] [ 5 3 8 1 ][3 2 5 6]] inv_pair_cnt = countInversionPairs(mat) print('The number of inversion pairs are :' inv_pair_cnt) # This code is contributed by shubhamsingh10
C# // C# program to count the number of inversion // Tuples in a 2D matrix using System; using System.Collections.Generic; class GFG { // for simplicity we are taking N as 4 static int N = 4; // Function to update a 2D BIT. It updates the // value of bit[l r] by adding val to bit[l r] static void update(int l int r int val int[] bit) { for (int x = l; x <= N; x += (x & -x)) for (int j = r; j <= N; j += j & -j) bit[x j] += val; } // function to find cumulative sum upto // index (l r) in the 2D BIT static int query(int l int r int[] bit) { int ret = 0; for (int x = l; x > 0; x -= (x & -x)) for (int j = r; j > 0; j -= (j & -j)) ret += bit[x j]; return ret; } // function to count and return the number // of inversion Tuples in the matrix static int countInversionTuples(int[] mat) { // the 2D bit array and initialize it with 0. int[ ] bit = new int[N + 1 N +1]; for (int x = 0; x <= N; x++) for (int y = 0; y <= N; y++) bit[x y] = 0; // v will store the tuple (-mat[i j] i j) List<Tuple<int Tuple<int int> > > v = new List<Tuple<int Tuple<int int> > >(); // store the tuples in the vector v for (int x = 0; x < N; ++x) for (int j = 0; j < N; ++j) // Note that we are not using the Tuple // (0 0) because BIT update and query // operations are not done on index 0 v.Add(Tuple.Create(-mat[x j] Tuple.Create(x+1 j+1))); // sort the vector v according to the // first element of the tuple i.e. -mat[i j] v.Sort(); // inv_Tuple_cnt will store the number of // inversion Tuples int inv_Tuple_cnt = 0; // traverse all the tuples of vector v int i = 0; while (i < v.Count) { int curr = i; // 'Tuples' will store the position of each element // i.e. the Tuple (i j) of each tuple of the vector v List<Tuple<int int>> Tuples = new List<Tuple<int int>>(); // consider the current tuple in v and all its // adjacent tuples whose first value i.e. the // value of –mat[i j] is same while (curr < v.Count && (v[curr].Item1 == v[i].Item1)) { // push the position of the current element in 'Tuples' Tuples.Add(Tuple.Create(v[curr].Item2.Item1 v[curr].Item2.Item2)); // add the number of elements which are // less than the current element and lie on the right // side in the vector v inv_Tuple_cnt += query(v[curr].Item2.Item1 v[curr].Item2.Item2 bit); curr++; } // traverse the 'Tuples' vector foreach (var it in Tuples) { int x = it.Item1; int y = it.Item2; // update the position (x y) by 1 update(x y 1 bit); } i = curr; } return inv_Tuple_cnt; } // Driver program public static void Main(string[] args) { int[ ] mat = { { 4 7 2 9 } { 6 4 1 7 } { 5 3 8 1 } { 3 2 5 6 } }; int inv_Tuple_cnt = countInversionTuples(mat); Console.WriteLine( 'The number of inversion Tuples are : ' + inv_Tuple_cnt); } } // This code is contributed by phasing17.
JavaScript // JavaScript program to count the number of inversion // pairs in a 2D matrix // for simplicity we are taking N as 4 let N = 4 // Function to update a 2D BIT. It updates the // value of bit[l][r] by adding val to bit[l][r] function update(l r val bit) { let i = l while(i <= N) { let j = r while(j <= N) { bit[i][j] += val j += (j & -j) } i += (i & -i) } return bit } // function to find cumulative sum upto // index (l r) in the 2D BIT function query(l r bit) { let ret = 0 let i = l while(i > 0) { let j = r while(j > 0) { ret += bit[i][j] j -= (j & -j) } i -= (i & -i) } return ret } // function to count and return the number // of inversion pairs in the matrix function countInversionPairs(mat) { // the 2D bit array and initialize it with 0. let bit = new Array(N + 1) for (let i = 0; i <= N; i++) bit[i] = new Array(N + 1).fill(0) // v will store the tuple (-mat[i][j] i j) let v = [] // store the tuples in the vector v for (let i = 0; i < N; i++) for (var j = 0; j < N; j++) // Note that we are not using the pair // (0 0) because BIT update and query // operations are not done on index 0 v.push([-mat[i][j] [i + 1 j + 1]]) // sort the vector v according to the // first element of the tuple i.e. -mat[i][j] v.sort(function(a b) { return a[0] - b[0]}) // inv_pair_cnt will store the number of // inversion pairs let inv_pair_cnt = 0 // traverse all the tuples of vector v let i = 0 while (i < v.length) { let curr = i // 'pairs' will store the position of each element // i.e. the pair (i j) of each tuple of the vector v let pairs = [] // consider the current tuple in v and all its // adjacent tuples whose first value i.e. the // value of –mat[i][j] is same while (curr < v.length && (v[curr][0] == v[i][0])) { // push the position of the current element in 'pairs' pairs.push([v[curr][1][0] v[curr][1][1]]) // add the number of elements which are // less than the current element and lie on the right // side in the vector v inv_pair_cnt += query(v[curr][1][0] v[curr][1][1] bit) curr += 1 } // traverse the 'pairs' vector for (let it of pairs) { let x = it[0] let y = it[1] // update the position (x y) by 1 bit = update(x y 1 bit) } i = curr } return inv_pair_cnt } // Driver code let mat = [[4 7 2 9 ][ 6 4 1 7 ] [ 5 3 8 1 ][3 2 5 6]] let inv_pair_cnt = countInversionPairs(mat) console.log('The number of inversion pairs are ' inv_pair_cnt) // This code is contributed by phasing17
Java import java.util.*; class Main { static final int N = 4; static void update(int l int r int val int[][] bit) { for (int i = l; i <= N; i += i & -i) for (int j = r; j <= N; j += j & -j) bit[i][j] += val; } static long query(int l int r int[][] bit) { long ret = 0; for (int i = l; i > 0; i -= i & -i) for (int j = r; j > 0; j -= j & -j) ret += bit[i][j]; return ret; } static long countInversionPairs(int[][] mat) { int[][] bit = new int[N + 1][N + 1]; List<AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>>> v = new ArrayList<>(); for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) v.add(new AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>>(-mat[i][j] new AbstractMap.SimpleEntry<Integer Integer>(i + 1 j + 1))); Collections.sort(v new Comparator<AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>>>() { @Override public int compare(AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>> a AbstractMap.SimpleEntry<Integer AbstractMap.SimpleEntry<Integer Integer>> b) { return a.getKey().compareTo(b.getKey()); } }); long invPairCnt = 0; int i = 0; while (i < v.size()) { int curr = i; List<AbstractMap.SimpleEntry<Integer Integer>> pairs = new ArrayList<>(); while (curr < v.size() && (v.get(curr).getKey().equals(v.get(i).getKey()))) { pairs.add(v.get(curr).getValue()); invPairCnt += query(v.get(curr).getValue().getKey() v.get(curr).getValue().getValue() bit); curr++; } for (AbstractMap.SimpleEntry<Integer Integer> p : pairs) { int x = p.getKey(); int y = p.getValue(); update(x y 1 bit); } i = curr; } return invPairCnt; } public static void main(String[] args) { int[][] mat = {{4 7 2 9} {6 4 1 7} {5 3 8 1} {3 2 5 6}}; long invPairCnt = countInversionPairs(mat); System.out.println('The number of inversion pairs are: ' + invPairCnt); } } // This code is contributed by Prince Kumar
Çıkış
The number of inversion pairs are : 43
Zaman Karmaşıklığı : O(log(NxN)) burada N matrisin boyutudur
Uzay Karmaşıklığı : Ç(NxN)
Test Oluştur