Her hücrenin belirli bir maliyetle ilişkili olduğu N*N boyutunda bir kare matris verilmiştir. Yol, sol üst hücreden başlayıp yalnızca sağa veya aşağı hareket eden ve sağ alt hücrede biten belirli bir hücre dizisi olarak tanımlanır. Mevcut tüm yollar üzerinden maksimum ortalamaya sahip bir yol bulmak istiyoruz. Ortalama, toplam maliyetin yolda ziyaret edilen hücre sayısına bölünmesiyle hesaplanır.
Örnekler:
Input : Matrix = [1 2 3
4 5 6
7 8 9]
Output : 5.8
Path with maximum average is 1 -> 4 -> 7 -> 8 -> 9
Sum of the path is 29 and average is 29/5 = 5.8
İlginç bir gözlem, izin verilen tek hareketin aşağı ve sağa olması, hedefe ulaşmak için N-1 aşağı hareketlere ve N-1 sağa hareketlere ihtiyacımız var (en sağ altta). Yani sol üst köşeden sağ alt köşeye kadar olan herhangi bir yol için 2N - 1 hücre gerekir. İçinde ortalama Payda değeri sabittir ve sadece payı maksimuma çıkarmamız gerekir. Bu nedenle temel olarak maksimum toplam yolunu bulmamız gerekiyor. Maksimum yol toplamının hesaplanması klasik bir dinamik programlama problemidir, eğer dp[i][j] (0 0)'dan (i j) hücresine kadar maksimum toplamı temsil ediyorsa, o zaman her hücrede (i j) dp[i][j]'yi aşağıdaki gibi güncelleriz.
for all i 1 <= i <= N
dp[i][0] = dp[i-1][0] + cost[i][0];
for all j 1 <= j <= N
dp[0][j] = dp[0][j-1] + cost[0][j];
otherwise
dp[i][j] = max(dp[i-1][j] dp[i][j-1]) + cost[i][j];
Tüm yolların maksimum toplamını elde ettiğimizde bu toplamı (2N - 1)'e bölerek maksimum ortalamamızı elde ederiz.
Uygulama:
C++//C/C++ program to find maximum average cost path #include using namespace std; // Maximum number of rows and/or columns const int M = 100; // method returns maximum average of all path of // cost matrix double maxAverageOfPath(int cost[M][M] int N) { int dp[N+1][N+1]; dp[0][0] = cost[0][0]; /* Initialize first column of total cost(dp) array */ for (int i = 1; i < N; i++) dp[i][0] = dp[i-1][0] + cost[i][0]; /* Initialize first row of dp array */ for (int j = 1; j < N; j++) dp[0][j] = dp[0][j-1] + cost[0][j]; /* Construct rest of the dp array */ for (int i = 1; i < N; i++) for (int j = 1; j <= N; j++) dp[i][j] = max(dp[i-1][j] dp[i][j-1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return (double)dp[N-1][N-1] / (2*N-1); } /* Driver program to test above functions */ int main() { int cost[M][M] = { {1 2 3} {6 5 4} {7 3 9} }; printf('%f' maxAverageOfPath(cost 3)); return 0; }
Java // JAVA Code for Path with maximum average // value import java.io.*; class GFG { // method returns maximum average of all // path of cost matrix public static double maxAverageOfPath(int cost[][] int N) { int dp[][] = new int[N+1][N+1]; dp[0][0] = cost[0][0]; /* Initialize first column of total cost(dp) array */ for (int i = 1; i < N; i++) dp[i][0] = dp[i-1][0] + cost[i][0]; /* Initialize first row of dp array */ for (int j = 1; j < N; j++) dp[0][j] = dp[0][j-1] + cost[0][j]; /* Construct rest of the dp array */ for (int i = 1; i < N; i++) for (int j = 1; j < N; j++) dp[i][j] = Math.max(dp[i-1][j] dp[i][j-1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return (double)dp[N-1][N-1] / (2 * N - 1); } /* Driver program to test above function */ public static void main(String[] args) { int cost[][] = {{1 2 3} {6 5 4} {7 3 9}}; System.out.println(maxAverageOfPath(cost 3)); } } // This code is contributed by Arnav Kr. Mandal.
C# // C# Code for Path with maximum average // value using System; class GFG { // method returns maximum average of all // path of cost matrix public static double maxAverageOfPath(int []cost int N) { int []dp = new int[N+1N+1]; dp[00] = cost[00]; /* Initialize first column of total cost(dp) array */ for (int i = 1; i < N; i++) dp[i 0] = dp[i - 10] + cost[i 0]; /* Initialize first row of dp array */ for (int j = 1; j < N; j++) dp[0 j] = dp[0j - 1] + cost[0 j]; /* Construct rest of the dp array */ for (int i = 1; i < N; i++) for (int j = 1; j < N; j++) dp[i j] = Math.Max(dp[i - 1 j] dp[ij - 1]) + cost[i j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return (double)dp[N - 1 N - 1] / (2 * N - 1); } // Driver Code public static void Main() { int []cost = {{1 2 3} {6 5 4} {7 3 9}}; Console.Write(maxAverageOfPath(cost 3)); } } // This code is contributed by nitin mittal.
JavaScript <script> // JavaScript Code for Path with maximum average value // method returns maximum average of all // path of cost matrix function maxAverageOfPath(cost N) { let dp = new Array(N+1); for (let i = 0; i < N + 1; i++) { dp[i] = new Array(N + 1); for (let j = 0; j < N + 1; j++) { dp[i][j] = 0; } } dp[0][0] = cost[0][0]; /* Initialize first column of total cost(dp) array */ for (let i = 1; i < N; i++) dp[i][0] = dp[i-1][0] + cost[i][0]; /* Initialize first row of dp array */ for (let j = 1; j < N; j++) dp[0][j] = dp[0][j-1] + cost[0][j]; /* Construct rest of the dp array */ for (let i = 1; i < N; i++) for (let j = 1; j < N; j++) dp[i][j] = Math.max(dp[i-1][j] dp[i][j-1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return dp[N-1][N-1] / (2 * N - 1); } let cost = [[1 2 3] [6 5 4] [7 3 9]]; document.write(maxAverageOfPath(cost 3)); </script>
PHP // Php program to find maximum average cost path // method returns maximum average of all path of // cost matrix function maxAverageOfPath($cost $N) { $dp = array(array()) ; $dp[0][0] = $cost[0][0]; /* Initialize first column of total cost(dp) array */ for ($i = 1; $i < $N; $i++) $dp[$i][0] = $dp[$i-1][0] + $cost[$i][0]; /* Initialize first row of dp array */ for ($j = 1; $j < $N; $j++) $dp[0][$j] = $dp[0][$j-1] + $cost[0][$j]; /* Construct rest of the dp array */ for ($i = 1; $i < $N; $i++) { for ($j = 1; $j <= $N; $j++) $dp[$i][$j] = max($dp[$i-1][$j]$dp[$i][$j-1]) + $cost[$i][$j]; } // divide maximum sum by constant path // length : (2N - 1) for getting average return $dp[$N-1][$N-1] / (2*$N-1); } // Driver code $cost = array(array(1 2 3) array( 6 5 4) array(7 3 9) ) ; echo maxAverageOfPath($cost 3) ; // This code is contributed by Ryuga ?> Python3 # Python program to find # maximum average cost path # Maximum number of rows # and/or columns M = 100 # method returns maximum average of # all path of cost matrix def maxAverageOfPath(cost N): dp = [[0 for i in range(N + 1)] for j in range(N + 1)] dp[0][0] = cost[0][0] # Initialize first column of total cost(dp) array for i in range(1 N): dp[i][0] = dp[i - 1][0] + cost[i][0] # Initialize first row of dp array for j in range(1 N): dp[0][j] = dp[0][j - 1] + cost[0][j] # Construct rest of the dp array for i in range(1 N): for j in range(1 N): dp[i][j] = max(dp[i - 1][j] dp[i][j - 1]) + cost[i][j] # divide maximum sum by constant path # length : (2N - 1) for getting average return dp[N - 1][N - 1] / (2 * N - 1) # Driver program to test above function cost = [[1 2 3] [6 5 4] [7 3 9]] print(maxAverageOfPath(cost 3)) # This code is contributed by Soumen Ghosh.
Çıkış
5.200000
Zaman karmaşıklığı : AÇIK2) verilen N girişi için
Yardımcı Alan: AÇIK2) verilen N girişi için.
Yöntem - 2: Ekstra N*N alanı kullanmadan
Ans'ı depolamak için girdi maliyeti dizisini dp olarak kullanabiliriz. yani bu şekilde fazladan bir dp dizisine veya fazladan alana ihtiyacımız yok.
Gözlemlerden biri, izin verilen tek hareketin aşağı ve sağa olduğudur, hedefe ulaşmak için N-1 aşağı hareketlere ve N-1 sağa hareketlere ihtiyacımız vardır (en sağ altta). Yani sol üst köşeden sağ alt köşeye kadar olan herhangi bir yol 2N - 1 hücre gerektirir. İçinde ortalama Payda değeri sabittir ve sadece payı maksimuma çıkarmamız gerekir. Bu nedenle temel olarak maksimum toplam yolunu bulmamız gerekiyor. Maksimum yol toplamını hesaplamak klasik bir dinamik programlama problemidir ayrıca dp[i][j]'yi hesapladıktan sonra herhangi bir önceki maliyet[i][j] değerine ihtiyacımız yoktur, böylece maliyet[i][j] değerini dp[i][j] için ekstra alana ihtiyaç duymayacak şekilde değiştirebiliriz.
for all i 1 <= i < N
cost[i][0] = cost[i-1][0] + cost[i][0];
for all j 1 <= j < N
cost[0][j] = cost[0][j-1] + cost[0][j];
otherwise
cost[i][j] = max(cost[i-1][j] cost[i][j-1]) + cost[i][j];
Yukarıdaki yaklaşımın uygulanması aşağıdadır:
C++// C++ program to find maximum average cost path #include using namespace std; // Method returns maximum average of all path of cost matrix double maxAverageOfPath(vector<vector<int>>cost) { int N = cost.size(); // Initialize first column of total cost array for (int i = 1; i < N; i++) cost[i][0] = cost[i][0] + cost[i - 1][0]; // Initialize first row of array for (int j = 1; j < N; j++) cost[0][j] = cost[0][j - 1] + cost[0][j]; // Construct rest of the array for (int i = 1; i < N; i++) for (int j = 1; j <= N; j++) cost[i][j] = max(cost[i - 1][j] cost[i][j - 1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return (double)cost[N - 1][N - 1] / (2 * N - 1); } // Driver program int main() { vector<vector<int>> cost = {{1 2 3} {6 5 4} {7 3 9} }; cout << maxAverageOfPath(cost); return 0; }
Java // Java program to find maximum average cost path import java.io.*; class GFG { // Method returns maximum average of all path of cost // matrix static double maxAverageOfPath(int[][] cost) { int N = cost.length; // Initialize first column of total cost array for (int i = 1; i < N; i++) cost[i][0] = cost[i][0] + cost[i - 1][0]; // Initialize first row of array for (int j = 1; j < N; j++) cost[0][j] = cost[0][j - 1] + cost[0][j]; // Construct rest of the array for (int i = 1; i < N; i++) for (int j = 1; j < N; j++) cost[i][j] = Math.max(cost[i - 1][j] cost[i][j - 1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return (double)cost[N - 1][N - 1] / (2 * N - 1); } // Driver program public static void main(String[] args) { int[][] cost = { { 1 2 3 } { 6 5 4 } { 7 3 9 } }; System.out.println(maxAverageOfPath(cost)); } } // This code is contributed by karandeep1234
C# // C# program to find maximum average cost path using System; class GFG { // Method returns maximum average of all path of cost // matrix static double maxAverageOfPath(int[ ] cost) { int N = cost.GetLength(0); // Initialize first column of total cost array for (int i = 1; i < N; i++) cost[i 0] = cost[i 0] + cost[i - 1 0]; // Initialize first row of array for (int j = 1; j < N; j++) cost[0 j] = cost[0 j - 1] + cost[0 j]; // Construct rest of the array for (int i = 1; i < N; i++) for (int j = 1; j < N; j++) cost[i j] = Math.Max(cost[i - 1 j] cost[i j - 1]) + cost[i j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return (double)cost[N - 1 N - 1] / (2 * N - 1); } // Driver program static void Main(string[] args) { int[ ] cost = { { 1 2 3 } { 6 5 4 } { 7 3 9 } }; Console.WriteLine(maxAverageOfPath(cost)); } } // This code is contributed by karandeep1234
JavaScript // Method returns maximum average of all path of cost matrix function maxAverageOfPath(cost) { let N = cost.length; // Initialize first column of total cost array for (let i = 1; i < N; i++) cost[i][0] = cost[i][0] + cost[i - 1][0]; // Initialize first row of array for (let j = 1; j < N; j++) cost[0][j] = cost[0][j - 1] + cost[0][j]; // Construct rest of the array for (let i = 1; i < N; i++) for (let j = 1; j <= N; j++) cost[i][j] = Math.max(cost[i - 1][j] cost[i][j - 1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return (cost[N - 1][N - 1]) / (2.0 * N - 1); } // Driver program let cost = [[1 2 3] [6 5 4] [7 3 9]]; console.log(maxAverageOfPath(cost)) // This code is contributed by karandeep1234.
Python3 # Python program to find maximum average cost path from typing import List def maxAverageOfPath(cost: List[List[int]]) -> float: N = len(cost) # Initialize first column of total cost array for i in range(1 N): cost[i][0] = cost[i][0] + cost[i - 1][0] # Initialize first row of array for j in range(1 N): cost[0][j] = cost[0][j - 1] + cost[0][j] # Construct rest of the array for i in range(1 N): for j in range(1 N): cost[i][j] = max(cost[i - 1][j] cost[i][j - 1]) + cost[i][j] # divide maximum sum by constant path # length : (2N - 1) for getting average return cost[N - 1][N - 1] / (2 * N - 1) # Driver program def main(): cost = [[1 2 3] [6 5 4] [7 3 9]] print(maxAverageOfPath(cost)) if __name__ == '__main__': main()
Çıkış
5.2
Zaman Karmaşıklığı: Ç(H*H)
Yardımcı Alan: Ç(1)