Size W kg boyutunda bir torba veriliyor ve size farklı ağırlıklardaki portakal paketlerinin maliyetleri dizi maliyetinde[] veriliyor. maliyet[i] temel olarak maliyeti 'Ben' kg paket portakal. Maliyet[i] = -1 şu anlama gelir: 'Ben' kg'lık portakal paketi mevcut değil
Tam olarak W kg portakal satın almanın minimum toplam maliyetini bulun ve tam olarak W kg portakal satın almak mümkün değilse -1 yazdırın. Mevcut tüm paket türlerinin sonsuz miktarda temin edildiği varsayılabilir.
Not: dizi indeks 1'den başlar.
Örnekler:
Input : W = 5 cost[] = {20 10 4 50 100} Output : 14 We can choose two oranges to minimize cost. First orange of 2Kg and cost 10. Second orange of 3Kg and cost 4. Input : W = 5 cost[] = {1 10 4 50 100} Output : 5 We can choose five oranges of weight 1 kg. Input : W = 5 cost[] = {1 2 3 4 5} Output : 5 Costs of 1 2 3 4 and 5 kg packets are 1 2 3 4 and 5 Rs respectively. We choose packet of 5kg having cost 5 for minimum cost to get 5Kg oranges. Input : W = 5 cost[] = {-1 -1 4 5 -1} Output : -1 Packets of size 1 2 and 5 kg are unavailable because they have cost -1. Cost of 3 kg packet is 4 Rs and of 4 kg is 5 Rs. Here we have only weights 3 and 4 so by using these two we can not make exactly W kg weight therefore answer is -1.Recommended Practice Verilen ağırlığı bir torbaya doldurmanın minimum maliyeti Deneyin! Yöntem 1:
Bu sorun şu şekilde azaltılabilir: Sınırsız Sırt Çantası k. Yani maliyet dizisinde öncelikle mevcut olmayan paketleri göz ardı ederiz; maliyet -1'dir ve ardından maliyet dizisini geçin ve maliyetini depolamak için iki val[] dizisi oluşturun 'Ben' kg turuncu paket ve karşılık gelen paketin ağırlığını depolamak için ağırlık[]. Maliyet[i] = 50 olduğunu varsayalım, dolayısıyla paketin ağırlığı i olacak ve maliyet 50 olacaktır.
Algoritma:
- Min_cost[n+1][W+1] matrisini oluşturun; burada n, farklı ağırlıklı turuncu paketlerin sayısıdır ve W, torbanın maksimum kapasitesidir.
- 0. satırı INF (sonsuz) ile ve 0. Sütunu 0 ile başlatın.
- Şimdi matrisi doldurun
- eğer wt[i-1] > j ise min_cost[i][j] = min_cost[i-1][j] ;
- eğer ağırlık[i-1]<= j then min_cost[i][j] = min(min_cost[i-1][j] val[i-1] + min_cost[i][j-wt[i-1]]);
- Eğer min_cost[n][W]==INF ise çıktı -1 olacaktır çünkü bu, bu ağırlıkları kullanarak W ağırlığını yapamayacağımız anlamına gelir, aksi halde çıktı olacaktır. min_cost[n][W] .
Yukarıdaki algoritmanın uygulaması aşağıdadır:
C++
// C++ program to find minimum cost to get exactly // W Kg with given packets #include #define INF 1000000 using namespace std; // cost[] initial cost array including unavailable packet // W capacity of bag int MinimumCost(int cost[] int n int W) { // val[] and wt[] arrays // val[] array to store cost of 'i' kg packet of orange // wt[] array weight of packet of orange vector<int> val wt; // traverse the original cost[] array and skip // unavailable packets and make val[] and wt[] // array. size variable tells the available number // of distinct weighted packets int size = 0; for (int i=0; i<n; i++) { if (cost[i]!= -1) { val.push_back(cost[i]); wt.push_back(i+1); size++; } } n = size; int min_cost[n+1][W+1]; // fill 0th row with infinity for (int i=0; i<=W; i++) min_cost[0][i] = INF; // fill 0'th column with 0 for (int i=1; i<=n; i++) min_cost[i][0] = 0; // now check for each weight one by one and fill the // matrix according to the condition for (int i=1; i<=n; i++) { for (int j=1; j<=W; j++) { // wt[i-1]>j means capacity of bag is // less than weight of item if (wt[i-1] > j) min_cost[i][j] = min_cost[i-1][j]; // here we check we get minimum cost either // by including it or excluding it else min_cost[i][j] = min(min_cost[i-1][j] min_cost[i][j-wt[i-1]] + val[i-1]); } } // exactly weight W can not be made by given weights return (min_cost[n][W]==INF)? -1: min_cost[n][W]; } // Driver program to run the test case int main() { int cost[] = {1 2 3 4 5} W = 5; int n = sizeof(cost)/sizeof(cost[0]); cout << MinimumCost(cost n W); return 0; }
Java // Java Code for Minimum cost to // fill given weight in a bag import java.util.*; class GFG { // cost[] initial cost array including // unavailable packet W capacity of bag public static int MinimumCost(int cost[] int n int W) { // val[] and wt[] arrays // val[] array to store cost of 'i' kg // packet of orange wt[] array weight of // packet of orange Vector<Integer> val = new Vector<Integer>(); Vector<Integer> wt = new Vector<Integer>(); // traverse the original cost[] array and skip // unavailable packets and make val[] and wt[] // array. size variable tells the available // number of distinct weighted packets int size = 0; for (int i = 0; i < n; i++) { if (cost[i] != -1) { val.add(cost[i]); wt.add(i + 1); size++; } } n = size; int min_cost[][] = new int[n+1][W+1]; // fill 0th row with infinity for (int i = 0; i <= W; i++) min_cost[0][i] = Integer.MAX_VALUE; // fill 0'th column with 0 for (int i = 1; i <= n; i++) min_cost[i][0] = 0; // now check for each weight one by one and // fill the matrix according to the condition for (int i = 1; i <= n; i++) { for (int j = 1; j <= W; j++) { // wt[i-1]>j means capacity of bag is // less than weight of item if (wt.get(i-1) > j) min_cost[i][j] = min_cost[i-1][j]; // here we check we get minimum cost // either by including it or excluding // it else min_cost[i][j] = Math.min(min_cost[i-1][j] min_cost[i][j-wt.get(i-1)] + val.get(i-1)); } } // exactly weight W can not be made by // given weights return (min_cost[n][W] == Integer.MAX_VALUE)? -1: min_cost[n][W]; } /* Driver program to test above function */ public static void main(String[] args) { int cost[] = {1 2 3 4 5} W = 5; int n = cost.length; System.out.println(MinimumCost(cost n W)); } } // This code is contributed by Arnav Kr. Mandal.
Python3 # Python program to find minimum cost to get exactly # W Kg with given packets INF = 1000000 # cost[] initial cost array including unavailable packet # W capacity of bag def MinimumCost(cost n W): # val[] and wt[] arrays # val[] array to store cost of 'i' kg packet of orange # wt[] array weight of packet of orange val = list() wt= list() # traverse the original cost[] array and skip # unavailable packets and make val[] and wt[] # array. size variable tells the available number # of distinct weighted packets. size = 0 for i in range(n): if (cost[i] != -1): val.append(cost[i]) wt.append(i+1) size += 1 n = size min_cost = [[0 for i in range(W+1)] for j in range(n+1)] # fill 0th row with infinity for i in range(W+1): min_cost[0][i] = INF # fill 0th column with 0 for i in range(1 n+1): min_cost[i][0] = 0 # now check for each weight one by one and fill the # matrix according to the condition for i in range(1 n+1): for j in range(1 W+1): # wt[i-1]>j means capacity of bag is # less than weight of item if (wt[i-1] > j): min_cost[i][j] = min_cost[i-1][j] # here we check we get minimum cost either # by including it or excluding it else: min_cost[i][j] = min(min_cost[i-1][j] min_cost[i][j-wt[i-1]] + val[i-1]) # exactly weight W can not be made by given weights if(min_cost[n][W] == INF): return -1 else: return min_cost[n][W] # Driver program to run the test case cost = [1 2 3 4 5] W = 5 n = len(cost) print(MinimumCost(cost n W)) # This code is contributed by Soumen Ghosh.
C# // C# Code for Minimum cost to // fill given weight in a bag using System; using System.Collections.Generic; class GFG { // cost[] initial cost array including // unavailable packet W capacity of bag public static int MinimumCost(int []cost int n int W) { // val[] and wt[] arrays // val[] array to store cost of 'i' kg // packet of orange wt[] array weight of // packet of orange List<int> val = new List<int>(); List<int> wt = new List<int>(); // traverse the original cost[] array and skip // unavailable packets and make val[] and wt[] // array. size variable tells the available // number of distinct weighted packets int size = 0; for (int i = 0; i < n; i++) { if (cost[i] != -1) { val.Add(cost[i]); wt.Add(i + 1); size++; } } n = size; int []min_cost = new int[n+1W+1]; // fill 0th row with infinity for (int i = 0; i <= W; i++) min_cost[0i] = int.MaxValue; // fill 0'th column with 0 for (int i = 1; i <= n; i++) min_cost[i0] = 0; // now check for each weight one by one and // fill the matrix according to the condition for (int i = 1; i <= n; i++) { for (int j = 1; j <= W; j++) { // wt[i-1]>j means capacity of bag is // less than weight of item if (wt[i-1] > j) min_cost[ij] = min_cost[i-1j]; // here we check we get minimum cost // either by including it or excluding // it else min_cost[ij] = Math.Min(min_cost[i-1j] min_cost[ij-wt[i-1]] + val[i-1]); } } // exactly weight W can not be made by // given weights return (min_cost[nW] == int.MaxValue )? -1: min_cost[nW]; } /* Driver program to test above function */ public static void Main() { int []cost = {1 2 3 4 5}; int W = 5; int n = cost.Length; Console.WriteLine(MinimumCost(cost n W)); } } // This code is contributed by Ryuga
PHP // PHP program to find minimum cost to // get exactly W Kg with given packets $INF = 1000000; // cost[] initial cost array including // unavailable packet W capacity of bag function MinimumCost(&$cost $n $W) { global $INF; // val[] and wt[] arrays // val[] array to store cost of 'i' // kg packet of orange // wt[] array weight of packet of orange $val = array(); $wt = array(); // traverse the original cost[] array // and skip unavailable packets and // make val[] and wt[] array. size // variable tells the available number // of distinct weighted packets $size = 0; for ($i = 0; $i < $n; $i++) { if ($cost[$i] != -1) { array_push($val $cost[$i]); array_push($wt $i + 1); $size++; } } $n = $size; $min_cost = array_fill(0 $n + 1 array_fill(0 $W + 1 NULL)); // fill 0th row with infinity for ($i = 0; $i <= $W; $i++) $min_cost[0][$i] = $INF; // fill 0'th column with 0 for ($i = 1; $i <= $n; $i++) $min_cost[$i][0] = 0; // now check for each weight one by // one and fill the matrix according // to the condition for ($i = 1; $i <= $n; $i++) { for ($j = 1; $j <= $W; $j++) { // wt[i-1]>j means capacity of bag // is less than weight of item if ($wt[$i - 1] > $j) $min_cost[$i][$j] = $min_cost[$i - 1][$j]; // here we check we get minimum // cost either by including it // or excluding it else $min_cost[$i][$j] = min($min_cost[$i - 1][$j] $min_cost[$i][$j - $wt[$i - 1]] + $val[$i - 1]); } } // exactly weight W can not be made // by given weights if ($min_cost[$n][$W] == $INF) return -1; else return $min_cost[$n][$W]; } // Driver Code $cost = array(1 2 3 4 5); $W = 5; $n = sizeof($cost); echo MinimumCost($cost $n $W); // This code is contributed by ita_c ?> JavaScript <script> // Javascript program to find minimum cost to get exactly // W Kg with given packets let INF = 1000000; // cost[] initial cost array including unavailable packet // W capacity of bag function MinimumCost(cost n W) { // val[] and wt[] arrays // val[] array to store cost of 'i' kg packet of orange // wt[] array weight of packet of orange let val = [] wt = []; // traverse the original cost[] array and skip // unavailable packets and make val[] and wt[] // array. size variable tells the available number // of distinct weighted packets let size = 0; for (let i=0; i<n; i++) { if (cost[i]!= -1) { val.push(cost[i]); wt.push(i+1); size++; } } n = size; let min_cost = new Array(n+1); for(let i = 0; i < n + 1; i++) { min_cost[i] = new Array(W + 1); } // fill 0th row with infinity for (let i=0; i<=W; i++) min_cost[0][i] = INF; // fill 0'th column with 0 for (let i=1; i<=n; i++) min_cost[i][0] = 0; // now check for each weight one by one and fill the // matrix according to the condition for (let i=1; i<=n; i++) { for (let j=1; j<=W; j++) { // wt[i-1]>j means capacity of bag is // less than weight of item if (wt[i-1] > j) min_cost[i][j] = min_cost[i-1][j]; // here we check we get minimum cost either // by including it or excluding it else min_cost[i][j] = Math.min(min_cost[i-1][j] min_cost[i][j-wt[i-1]] + val[i-1]); } } // exactly weight W can not be made by given weights return (min_cost[n][W]==INF)? -1: min_cost[n][W]; } // Driver code let cost = [1 2 3 4 5] W = 5; let n = cost.length; document.write(MinimumCost(cost n W)); // This code is contributed by suresh07. </script>
Çıkış
5
Zaman Karmaşıklığı: O (n * w)
Yardımcı Alan: O (n * w)
Alanı Optimize Edilmiş Çözüm Bu soruna daha yakından baktığımızda bunun bir çeşitleme olduğunu fark edebiliriz. Çubuk Kesme Sorunu . Burada maksimizasyon yapmak yerine minimizasyon yapmamız gerekiyor.
C++// C++ program to find minimum cost to // get exactly W Kg with given packets #include using namespace std; /* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces */ int minCost(int cost[] int n) { int dp[n+1]; dp[0] = 0; // Build the table val[] in bottom up // manner and return the last entry // from the table for (int i = 1; i<=n; i++) { int min_cost = INT_MAX; for (int j = 0; j < i; j++) if(cost[j]!=-1) min_cost = min(min_cost cost[j] + dp[i-j-1]); dp[i] = min_cost; } return dp[n]; } /* Driver code */ int main() { int cost[] = {20 10 4 50 100}; int W = sizeof(cost)/sizeof(cost[0]); cout << minCost(cost W); return 0; }
Java // Java program to find minimum cost to // get exactly W Kg with given packets import java.util.*; class Main { /* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces */ public static int minCost(int cost[] int n) { int dp[] = new int[n + 1]; dp[0] = 0; // Build the table val[] in bottom up // manner and return the last entry // from the table for (int i = 1; i <= n; i++) { int min_cost = Integer.MAX_VALUE; for (int j = 0; j < i; j++) if(cost[j]!=-1) { min_cost = Math.min(min_cost cost[j] + dp[i - j - 1]); } dp[i] = min_cost; } return dp[n]; } public static void main(String[] args) { int cost[] = {10-1-1-1-1}; int W = cost.length; System.out.print(minCost(cost W)); } } // This code is contributed by divyeshrabadiya07
Python3 # Python3 program to find minimum cost to # get exactly W Kg with given packets import sys # Returns the best obtainable price for # a rod of length n and price[] as prices # of different pieces def minCost(cost n): dp = [0 for i in range(n + 1)] # Build the table val[] in bottom up # manner and return the last entry # from the table for i in range(1 n + 1): min_cost = sys.maxsize for j in range(i): if cost[j]!=-1: min_cost = min(min_cost cost[j] + dp[i - j - 1]) dp[i] = min_cost return dp[n] # Driver code cost = [ 10-1-1-1-1 ] W = len(cost) print(minCost(cost W)) # This code is contributed by rag2127
C# // C# program to find minimum cost to // get exactly W Kg with given packets using System; class GFG { /* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces */ static int minCost(int[] cost int n) { int[] dp = new int[n + 1]; dp[0] = 0; // Build the table val[] in bottom up // manner and return the last entry // from the table for (int i = 1; i <= n; i++) { int min_cost = Int32.MaxValue; for (int j = 0; j < i; j++) if(cost[j]!=-1) min_cost = Math.Min(min_cost cost[j] + dp[i - j - 1]); dp[i] = min_cost; } return dp[n]; } // Driver code static void Main() { int[] cost = {20 10 4 50 100}; int W = cost.Length; Console.Write(minCost(cost W)); } } // This code is contributed by divyesh072019
JavaScript <script> // Javascript program to find minimum cost to // get exactly W Kg with given packets /* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces */ function minCost(cost n) { let dp = new Array(n+1); dp[0] = 0; // Build the table val[] in bottom up // manner and return the last entry // from the table for (let i = 1; i<=n; i++) { let min_cost = Number.MAX_VALUE; for (let j = 0; j < i; j++) if(j < n) min_cost = Math.min(min_cost cost[j] + dp[i-j-1]); dp[i] = min_cost; } return dp[n]; } let cost = [20 10 4 50 100]; let W = cost.length; document.write(minCost(cost W)); </script>
Çıkış
14
Zaman Karmaşıklığı: AÇIK2)
Yardımcı Alan: AÇIK)
Yukarıdan Aşağı Yaklaşım: Notlandırmayı kullanarak da sorunu çözebiliriz.
C++// C++ program to find minimum cost to // get exactly W Kg with given packets #include using namespace std; int helper(vector<int>& cost vector<int>& weight int n int w vector<vector<int> >& dp) { // base cases if (w == 0) return 0; if (w < 0 or n <= 0) return INT_MAX; if (dp[n][w] != -1) return dp[n][w]; if (cost[n - 1] < 0) return dp[n][w] = min(INT_MAX helper(cost weight n - 1 w dp)); if (weight[n - 1] <= w) { return dp[n][w] = min(cost[n - 1] + helper(cost weight n w - weight[n - 1] dp) helper(cost weight n - 1 w dp)); } return dp[n][w] = helper(cost weight n - 1 w dp); } int minCost(vector<int>& cost int W) { int N = cost.size(); // Your code goes here vector<int> weight(N); // create the weight array for (int i = 1; i <= N; i++) { weight[i - 1] = i; } // initialize the dp array vector<vector<int> > dp(N + 1 vector<int>(W + 1 -1)); int res = helper(cost weight N W dp); // return -1 if result is MAX return (res == INT_MAX) ? -1 : res; } /* Driver code */ int main() { vector<int> cost = { 20 10 4 50 100 }; int W = cost.size(); cout << minCost(cost W); return 0; }
Java // Java program to find minimum cost to // get exactly W Kg with given packets import java.io.*; class GFG { public static int helper(int cost[] int weight[] int n int w int dp[][]) { // base cases if (w == 0) return 0; if (w < 0 || n <= 0) return Integer.MAX_VALUE; if (dp[n][w] != -1) return dp[n][w]; if (cost[n - 1] < 0) return dp[n][w] = Math.min( Integer.MAX_VALUE helper(cost weight n - 1 w dp)); if (weight[n - 1] <= w) { return dp[n][w] = Math.min( cost[n - 1] + helper(cost weight n w - weight[n - 1] dp) helper(cost weight n - 1 w dp)); } return dp[n][w] = helper(cost weight n - 1 w dp); } public static int minCost(int cost[] int W) { int N = cost.length; int weight[] = new int[N]; // create the weight array for (int i = 1; i <= N; i++) { weight[i - 1] = i; } // initialize the dp array int dp[][] = new int[N + 1][W + 1]; for (int i = 0; i < N + 1; i++) for (int j = 0; j < W + 1; j++) dp[i][j] = -1; int res = helper(cost weight N W dp); // return -1 if result is MAX return (res == Integer.MAX_VALUE) ? -1 : res; } // Driver Code public static void main(String[] args) { int cost[] = { 20 10 4 50 100 }; int W = cost.length; System.out.print(minCost(cost W)); } } // This code is contributed by Rohit Pradhan
Python3 # Python3 program to find minimum cost to # get exactly W Kg with given packets import sys def helper(cost weight n w dp): # base cases if (w == 0): return 0 if (w < 0 or n <= 0): return sys.maxsize if (dp[n][w] != -1): return dp[n][w] if (cost[n - 1] < 0): dp[n][w] = min(sys.maxsize helper(cost weight n - 1 w dp)) return dp[n][w] if (weight[n - 1] <= w): dp[n][w] = min(cost[n - 1] + helper(cost weight n w - weight[n - 1] dp) helper(cost weight n - 1 w dp)) return dp[n][w] dp[n][w] = helper(cost weight n - 1 w dp) return dp[n][w] def minCost(cost W): N = len(cost) weight = [0 for i in range(N)] # create the weight array for i in range(1N + 1): weight[i - 1] = i # initialize the dp array dp = [[-1 for i in range(W + 1)]for j in range(N + 1)] res = helper(cost weight N W dp) # return -1 if result is MAX return -1 if(res == sys.maxsize) else res # Driver code cost = [ 20 10 4 50 100 ] W = len(cost) print(minCost(cost W)) # This code is contributed by shinjanpatra
C# // C# program to find minimum cost to // get exactly W Kg with given packets using System; class GFG { static int helper(int[] cost int[] weight int n int w int[] dp) { // base cases if (w == 0) return 0; if (w < 0 || n <= 0) return Int32.MaxValue; if (dp[nw] != -1) return dp[nw]; if (cost[n - 1] < 0) return dp[nw] = Math.Min( Int32.MaxValue helper(cost weight n - 1 w dp)); if (weight[n - 1] <= w) { return dp[nw] = Math.Min( cost[n - 1] + helper(cost weight n w - weight[n - 1] dp) helper(cost weight n - 1 w dp)); } return dp[nw] = helper(cost weight n - 1 w dp); } static int minCost(int[] cost int W) { int N = cost.Length; int[] weight = new int[N]; // create the weight array for (int i = 1; i <= N; i++) { weight[i - 1] = i; } // initialize the dp array int[] dp = new int[N + 1 W + 1]; for (int i = 0; i < N + 1; i++) for (int j = 0; j < W + 1; j++) dp[ij] = -1; int res = helper(cost weight N W dp); // return -1 if result is MAX return (res == Int32.MaxValue) ? -1 : res; } // Driver Code static public void Main() { int[] cost = { 20 10 4 50 100 }; int W = cost.Length; Console.Write(minCost(cost W)); } } // This code is contributed by kothavvsaakash
JavaScript <script> // JavaScript program to find minimum cost to // get exactly W Kg with given packets function helper(cost weight n w dp) { // base cases if (w == 0) return 0; if (w < 0 || n <= 0) return Number.MAX_VALUE; if (dp[n][w] != -1) return dp[n][w]; if (cost[n - 1] < 0) return dp[n][w] = Math.min(Number.MAX_VALUE helper(cost weight n - 1 w dp)); if (weight[n - 1] <= w) { return dp[n][w] = Math.min(cost[n - 1] + helper(cost weight n w - weight[n - 1] dp) helper(cost weight n - 1 w dp)); } return dp[n][w] = helper(cost weight n - 1 w dp); } function minCost(costW) { let N = cost.length; // Your code goes here let weight = new Array(N); // create the weight array for (let i = 1; i <= N; i++) { weight[i - 1] = i; } // initialize the dp array let dp = new Array(N + 1).fill(-1).map(()=>new Array(W + 1).fill(-1)); let res = helper(cost weight N W dp); // return -1 if result is MAX return (res == Number.MAX_VALUE) ? -1 : res; } /* Driver code */ let cost = [ 20 10 4 50 100 ]; let W = cost.length; document.write(minCost(cost W)''); // This code is contributed by shinjanpatra </script>
Çıkış
14
Zaman Karmaşıklığı: O(N*W)
Yardımcı Alan: O(K*B)
Bu makale GeeksForGeeks ekibi tarafından incelenmiştir.