logo

En büyük toplam bitişik artan alt dizi

GfG Practice'de deneyin ' title= #practiceLinkDiv { görüntü: yok !önemli; }

N pozitif farklı tam sayılardan oluşan bir dizi verildiğinde. Sorun, O(n) zaman karmaşıklığında bitişik artan alt dizilerin en büyük toplamını bulmaktır.

Örnekler:  

    Input    : arr[] = {2 1 4 7 3 6}  
Output : 12
Contiguous Increasing subarray {1 4 7} = 12
Input : arr[] = {38 7 8 10 12}
Output : 38
Recommended Practice Açgözlü Tilki Deneyin!

A basit çözüm öyle tüm alt dizileri oluştur ve toplamlarını hesaplayın. Son olarak alt diziyi maksimum toplamla döndürün. Bu çözümün zaman karmaşıklığı O(n)2).



Bir verimli çözüm tüm unsurların olumlu olduğu gerçeğine dayanmaktadır. Bu yüzden en uzun artan alt dizileri dikkate alıyoruz ve toplamlarını karşılaştırıyoruz. Artan alt diziler üst üste gelemediği için zaman karmaşıklığımız O(n) olur.

Algoritma:  

Let     arr    be the array of size     n     
Let result be the required sum
int largestSum(arr n)
result = INT_MIN // Initialize result
i = 0
while i < n
// Find sum of longest increasing subarray
// starting with i
curr_sum = arr[i];
while i+1 < n && arr[i] < arr[i+1]
curr_sum += arr[i+1];
i++;
// If current sum is greater than current
// result.
if result < curr_sum
result = curr_sum;
i++;
return result

Yukarıdaki algoritmanın uygulaması aşağıdadır.

C++
// C++ implementation of largest sum // contiguous increasing subarray #include    using namespace std; // Returns sum of longest // increasing subarray. int largestSum(int arr[] int n) {  // Initialize result  int result = INT_MIN;  // Note that i is incremented  // by inner loop also so overall  // time complexity is O(n)  for (int i = 0; i < n; i++) {  // Find sum of longest  // increasing subarray  // starting from arr[i]  int curr_sum = arr[i];  while (i + 1 < n && arr[i + 1] > arr[i]) {  curr_sum += arr[i + 1];  i++;  }  // Update result if required  if (curr_sum > result)  result = curr_sum;  }  // required largest sum  return result; } // Driver Code int main() {  int arr[] = { 1 1 4 7 3 6 };  int n = sizeof(arr) / sizeof(arr[0]);  cout << 'Largest sum = ' << largestSum(arr n);  return 0; } 
Java
// Java implementation of largest sum // contiguous increasing subarray class GFG {  // Returns sum of longest  // increasing subarray.  static int largestSum(int arr[] int n)  {  // Initialize result  int result = -9999999;  // Note that i is incremented  // by inner loop also so overall  // time complexity is O(n)  for (int i = 0; i < n; i++) {  // Find sum of longest  // increasing subarray  // starting from arr[i]  int curr_sum = arr[i];  while (i + 1 < n && arr[i + 1] > arr[i]) {  curr_sum += arr[i + 1];  i++;  }  // Update result if required  if (curr_sum > result)  result = curr_sum;  }  // required largest sum  return result;  }  // Driver Code  public static void main(String[] args)  {  int arr[] = { 1 1 4 7 3 6 };  int n = arr.length;  System.out.println('Largest sum = '  + largestSum(arr n));  } } 
Python3
# Python3 implementation of largest # sum contiguous increasing subarray # Returns sum of longest # increasing subarray. def largestSum(arr n): # Initialize result result = -2147483648 # Note that i is incremented # by inner loop also so overall # time complexity is O(n) for i in range(n): # Find sum of longest increasing # subarray starting from arr[i] curr_sum = arr[i] while (i + 1 < n and arr[i + 1] > arr[i]): curr_sum += arr[i + 1] i += 1 # Update result if required if (curr_sum > result): result = curr_sum # required largest sum return result # Driver Code arr = [1 1 4 7 3 6] n = len(arr) print('Largest sum = ' largestSum(arr n)) # This code is contributed by Anant Agarwal. 
C#
// C# implementation of largest sum // contiguous increasing subarray using System; class GFG {  // Returns sum of longest  // increasing subarray.  static int largestSum(int[] arr int n)  {  // Initialize result  int result = -9999999;  // Note that i is incremented by  // inner loop also so overall  // time complexity is O(n)  for (int i = 0; i < n; i++) {  // Find sum of longest increasing  // subarray starting from arr[i]  int curr_sum = arr[i];  while (i + 1 < n && arr[i + 1] > arr[i]) {  curr_sum += arr[i + 1];  i++;  }  // Update result if required  if (curr_sum > result)  result = curr_sum;  }  // required largest sum  return result;  }  // Driver code  public static void Main()  {  int[] arr = { 1 1 4 7 3 6 };  int n = arr.Length;  Console.Write('Largest sum = '  + largestSum(arr n));  } } // This code is contributed // by Nitin Mittal. 
JavaScript
<script> // Javascript implementation of largest sum // contiguous increasing subarray // Returns sum of longest // increasing subarray. function largestSum(arr n) {  // Initialize result  var result = -1000000000;  // Note that i is incremented  // by inner loop also so overall  // time complexity is O(n)  for (var i = 0; i < n; i++)  {  // Find sum of longest   // increasing subarray   // starting from arr[i]  var curr_sum = arr[i];  while (i + 1 < n &&   arr[i + 1] > arr[i])  {  curr_sum += arr[i + 1];  i++;  }  // Update result if required  if (curr_sum > result)  result = curr_sum;  }  // required largest sum  return result; } // Driver Code var arr = [1 1 4 7 3 6]; var n = arr.length; document.write( 'Largest sum = '   + largestSum(arr n)); // This code is contributed by itsok. </script> 
PHP
 // PHP implementation of largest sum // contiguous increasing subarray // Returns sum of longest  // increasing subarray. function largestSum($arr $n) { $INT_MIN = 0; // Initialize result $result = $INT_MIN; // Note that i is incremented  // by inner loop also so overall // time complexity is O(n) for ($i = 0; $i < $n; $i++) { // Find sum of longest  // increasing subarray // starting from arr[i] $curr_sum = $arr[$i]; while ($i + 1 < $n && $arr[$i + 1] > $arr[$i]) { $curr_sum += $arr[$i + 1]; $i++; } // Update result if required if ($curr_sum > $result) $result = $curr_sum; } // required largest sum return $result; } // Driver Code { $arr = array(1 1 4 7 3 6); $n = sizeof($arr) / sizeof($arr[0]); echo 'Largest sum = '  largestSum($arr $n); return 0; } // This code is contributed by nitin mittal. ?> 

Çıkış
Largest sum = 12

Zaman Karmaşıklığı : O(n)

 

En büyük toplam bitişik artan alt dizi Kullanımı Özyineleme

Bu sorunu çözmek için Özyinelemeli Algoritma:

İşte sorunun adım adım algoritması:

  1. fonksiyon 'en büyük Toplam' dizi alır 'var' ve boyutu 'N'.
  2. Eğer   'n==1' sonra geri dön varış[0]th eleman.
  3. Eğer 'n != 1' daha sonra özyinelemeli bir çağrı işlevi 'en büyük Toplam'   alt dizinin en büyük toplamını bulmak için 'dizi[0...n-1]' son öğe hariç 'dizi[n-1]' .
  4.  Sondan ikinci elemandan başlayarak diziyi ters sırayla yineleyerek, artan alt dizinin toplamını hesaplayın. 'dizi[n-1]' . Bir öğe diğerinden küçükse mevcut toplama eklenmelidir. Aksi takdirde döngünün kırılması gerekir.
  5. Daha sonra en büyük toplamın maksimumunu döndürün; ' max(max_sum geçerli_toplam);' .
     

Yukarıdaki algoritmanın uygulaması şu şekildedir:

C++
#include    using namespace std; // Recursive function to find the largest sum // of contiguous increasing subarray int largestSum(int arr[] int n) {  // Base case  if (n == 1)  return arr[0];  // Recursive call to find the largest sum  int max_sum = max(largestSum(arr n - 1) arr[n - 1]);  // Compute the sum of the increasing subarray  int curr_sum = arr[n - 1];  for (int i = n - 2; i >= 0; i--) {  if (arr[i] < arr[i + 1])  curr_sum += arr[i];  else  break;  }  // Return the maximum of the largest sum so far  // and the sum of the current increasing subarray  return max(max_sum curr_sum); } // Driver Code int main() {  int arr[] = { 1 1 4 7 3 6 };  int n = sizeof(arr) / sizeof(arr[0]);  cout << 'Largest sum = ' << largestSum(arr n);  return 0; } // This code is contributed by Vaibhav Saroj. 
C
#include  #include  // Returns sum of longest increasing subarray int largestSum(int arr[] int n) {  // Initialize result  int result = INT_MIN;  // Note that i is incremented  // by inner loop also so overall  // time complexity is O(n)  for (int i = 0; i < n; i++) {  // Find sum of longest  // increasing subarray  // starting from arr[i]  int curr_sum = arr[i];  while (i + 1 < n && arr[i + 1] > arr[i]) {  curr_sum += arr[i + 1];  i++;  }  // Update result if required  if (curr_sum > result)  result = curr_sum;  }  // required largest sum  return result; } // Driver code int main() {  int arr[] = { 1 1 4 7 3 6 };  int n = sizeof(arr) / sizeof(arr[0]);  printf('Largest sum = %dn' largestSum(arr n));  return 0; } // This code is contributed by Vaibhav Saroj. 
Java
/*package whatever //do not write package name here */ import java.util.*; public class Main {  // Recursive function to find the largest sum  // of contiguous increasing subarray  public static int largestSum(int arr[] int n)  {  // Base case  if (n == 1)  return arr[0];  // Recursive call to find the largest sum  int max_sum  = Math.max(largestSum(arr n - 1) arr[n - 1]);  // Compute the sum of the increasing subarray  int curr_sum = arr[n - 1];  for (int i = n - 2; i >= 0; i--) {  if (arr[i] < arr[i + 1])  curr_sum += arr[i];  else  break;  }  // Return the maximum of the largest sum so far  // and the sum of the current increasing subarray  return Math.max(max_sum curr_sum);  }  // Driver code  public static void main(String[] args)  {  int arr[] = { 1 1 4 7 3 6 };  int n = arr.length;  System.out.println('Largest sum = '  + largestSum(arr n));  } } // This code is contributed by Vaibhav Saroj. 
Python
def largestSum(arr n): # Base case if n == 1: return arr[0] # Recursive call to find the largest sum max_sum = max(largestSum(arr n-1) arr[n-1]) # Compute the sum of the increasing subarray curr_sum = arr[n-1] for i in range(n-2 -1 -1): if arr[i] < arr[i+1]: curr_sum += arr[i] else: break # Return the maximum of the largest sum so far # and the sum of the current increasing subarray return max(max_sum curr_sum) # Driver code arr = [1 1 4 7 3 6] n = len(arr) print('Largest sum =' largestSum(arr n)) # This code is contributed by Vaibhav Saroj. 
C#
// C# program for above approach using System; public static class GFG {  // Recursive function to find the largest sum  // of contiguous increasing subarray  public static int largestSum(int[] arr int n)  {  // Base case  if (n == 1)  return arr[0];  // Recursive call to find the largest sum  int max_sum  = Math.Max(largestSum(arr n - 1) arr[n - 1]);  // Compute the sum of the increasing subarray  int curr_sum = arr[n - 1];  for (int i = n - 2; i >= 0; i--) {  if (arr[i] < arr[i + 1])  curr_sum += arr[i];  else  break;  }  // Return the maximum of the largest sum so far  // and the sum of the current increasing subarray  return Math.Max(max_sum curr_sum);  }  // Driver code  public static void Main()  {  int[] arr = { 1 1 4 7 3 6 };  int n = arr.Length;  Console.WriteLine('Largest sum = '  + largestSum(arr n));  } } // This code is contributed by Utkarsh Kumar 
JavaScript
function largestSum(arr n) {  // Base case  if (n == 1)  return arr[0];  // Recursive call to find the largest sum  let max_sum = Math.max(largestSum(arr n-1) arr[n-1]);  // Compute the sum of the increasing subarray  let curr_sum = arr[n-1];  for (let i = n-2; i >= 0; i--) {  if (arr[i] < arr[i+1])  curr_sum += arr[i];  else  break;  }  // Return the maximum of the largest sum so far  // and the sum of the current increasing subarray  return Math.max(max_sum curr_sum); } // Driver Code let arr = [1 1 4 7 3 6]; let n = arr.length; console.log('Largest sum = ' + largestSum(arr n)); 
PHP
 // Recursive function to find the largest sum // of contiguous increasing subarray function largestSum($arr $n) { // Base case if ($n == 1) return $arr[0]; // Recursive call to find the largest sum $max_sum = max(largestSum($arr $n-1) $arr[$n-1]); // Compute the sum of the increasing subarray $curr_sum = $arr[$n-1]; for ($i = $n-2; $i >= 0; $i--) { if ($arr[$i] < $arr[$i+1]) $curr_sum += $arr[$i]; else break; } // Return the maximum of the largest sum so far // and the sum of the current increasing subarray return max($max_sum $curr_sum); } // Driver Code $arr = array(1 1 4 7 3 6); $n = count($arr); echo 'Largest sum = ' . largestSum($arr $n); ?> 

Çıkış
Largest sum = 12

Zaman Karmaşıklığı: O(n^2).
Uzay karmaşıklığı: Açık).

ikili ağaç ve ikili arama ağacı

En büyük toplam bitişik artan alt dizi Kadane algoritmasını kullanarak: -

En büyük toplam alt diziyi elde etmek için Kadane yaklaşımı kullanılır ancak dizinin hem pozitif hem de negatif değerler içerdiğini varsayar. Bu durumda algoritmayı yalnızca bitişik yükselen alt dizilerde çalışacak şekilde değiştirmeliyiz.

En büyük toplam bitişik artan alt diziyi bulmak için Kadane'nin algoritmasını nasıl değiştirebileceğimiz aşağıda açıklanmıştır:

  1. İki değişkeni başlatın: max_sum ve curr_sum dizinin ilk elemanına.
  2. İkinci öğeden başlayarak dizide döngü yapın.
  3. eğer mevcut eleman önceki elemandan büyükse onu curr_sum'a ekleyin. Aksi takdirde curr_sum'u geçerli öğeye sıfırlayın.
  4. Curr_sum max_sum'dan büyükse max_sum'u güncelleyin.
  5. Döngüden sonra max_sum en büyük toplam bitişik artan alt diziyi içerecektir.
     
C++
#include    using namespace std; int largest_sum_contiguous_increasing_subarray(int arr[] int n) {  int max_sum = arr[0];  int curr_sum = arr[0];  for (int i = 1; i < n; i++) {  if (arr[i] > arr[i-1]) {  curr_sum += arr[i];  }  else {  curr_sum = arr[i];  }  if (curr_sum > max_sum) {  max_sum = curr_sum;  }  }  return max_sum; } int main() {  int arr[] = { 1 1 4 7 3 6 };  int n = sizeof(arr)/sizeof(arr[0]);  cout << largest_sum_contiguous_increasing_subarray(arr n) << endl; // Output: 44 (1+2+3+5+7+8+9+10)  return 0; } 
Java
public class Main {  public static int largestSumContiguousIncreasingSubarray(int[] arr   int n) {  int maxSum = arr[0];  int currSum = arr[0];  for (int i = 1; i < n; i++) {  if (arr[i] > arr[i-1]) {  currSum += arr[i];  }  else {  currSum = arr[i];  }  if (currSum > maxSum) {  maxSum = currSum;  }  }  return maxSum;  }  public static void main(String[] args) {  int[] arr = { 1 1 4 7 3 6 };  int n = arr.length;  System.out.println(largestSumContiguousIncreasingSubarray(arr  n)); // Output: 44 (1+2+3+5+7+8+9+10)  } } 
Python3
def largest_sum_contiguous_increasing_subarray(arr n): max_sum = arr[0] curr_sum = arr[0] for i in range(1 n): if arr[i] > arr[i-1]: curr_sum += arr[i] else: curr_sum = arr[i] if curr_sum > max_sum: max_sum = curr_sum return max_sum arr = [1 1 4 7 3 6] n = len(arr) print(largest_sum_contiguous_increasing_subarray(arr n)) #output 12 (1+4+7) 
C#
using System; class GFG {  // Function to find the largest sum of a contiguous  // increasing subarray  static int  LargestSumContiguousIncreasingSubarray(int[] arr int n)  {  int maxSum = arr[0]; // Initialize the maximum sum  // and current sum  int currSum = arr[0];  for (int i = 1; i < n; i++) {  if (arr[i]  > arr[i - 1]) // Check if the current  // element is greater than the  // previous element  {  currSum  += arr[i]; // If increasing add the  // element to the current sum  }  else {  currSum  = arr[i]; // If not increasing start a  // new increasing subarray  // from the current element  }  if (currSum  > maxSum) // Update the maximum sum if the  // current sum is greater  {  maxSum = currSum;  }  }  return maxSum;  }  static void Main()  {  int[] arr = { 1 1 4 7 3 6 };  int n = arr.Length;  Console.WriteLine(  LargestSumContiguousIncreasingSubarray(arr n));  } } // This code is contributed by akshitaguprzj3 
JavaScript
 // Javascript code for above approach    // Function to find the largest sum of a contiguous  // increasing subarray  function LargestSumContiguousIncreasingSubarray(arr n)  {  let maxSum = arr[0]; // Initialize the maximum sum  // and current sum  let currSum = arr[0];    for (let i = 1; i < n; i++) {  if (arr[i]  > arr[i - 1]) // Check if the current  // element is greater than the  // previous element  {  currSum  += arr[i]; // If increasing add the  // element to the current sum  }  else {  currSum  = arr[i]; // If not increasing start a  // new increasing subarray  // from the current element  }    if (currSum  > maxSum) // Update the maximum sum if the  // current sum is greater  {  maxSum = currSum;  }  }    return maxSum;  }    let arr = [ 1 1 4 7 3 6 ];  let n = arr.length;  console.log(LargestSumContiguousIncreasingSubarray(arr n));      // This code is contributed by Pushpesh Raj   

Çıkış
12

Zaman Karmaşıklığı: O(n).
Uzay karmaşıklığı: O(1).

Test Oluştur