İki sayı verildiğinde 'a' ve 'b' öyle ki (0<= a <= 10^12 and b <= b < 10^250). Find the GCD of two given numbers.
Örnekler:
Input: a = 978 b = 89798763754892653453379597352537489494736 Output: 6 Input: a = 1221 b = 1234567891011121314151617181920212223242526272829 Output: 3
tarihformat.format
Çözüm : Verilen problemde, ilk 'a' sayısının long long int veri türü tarafından işlenebildiğini ancak ikinci sayı 'b'nin herhangi bir int veri türü tarafından işlenemediğini görebiliriz. Burada ikinci sayıyı string olarak okuyoruz ve 'a' ile modülünü alarak onu 'a'dan küçük ve eşit yapmaya çalışacağız.
Aşağıda yukarıdaki fikrin uygulanması yer almaktadır.
okulu kim icat ettiC++
// C++ program to find GCD of two numbers such that // the second number can be very large. #include using namespace std; typedef long long int ll; // function to find gcd of two integer numbers ll gcd(ll a ll b) { if (!a) return b; return gcd(b % a a); } // Here 'a' is integer and 'b' is string. // The idea is to make the second number (represented // as b) less than and equal to first number by // calculating its mod with first integer number // using basic mathematics ll reduceB(ll a char b[]) { // Initialize result ll mod = 0; // calculating mod of b with a to make // b like 0 <= b < a for (int i = 0; i < strlen(b); i++) mod = (mod * 10 + b[i] - '0') % a; return mod; // return modulo } // This function returns GCD of 'a' and 'b' // where b can be very large and is represented // as a character array or string ll gcdLarge(ll a char b[]) { // Reduce 'b' (second number) after modulo with a ll num = reduceB(a b); // gcd of two numbers return gcd(a num); } // Driver program int main() { // first number which is integer ll a = 1221; // second number is represented as string because // it can not be handled by integer data type char b[] = '1234567891011121314151617181920212223242526272829'; if (a == 0) cout << b << endl; else cout << gcdLarge(a b) << endl; return 0; }
Java // Java program to find // GCD of two numbers // such that the second // number can be very large. class GFG { // This function computes // the gcd of 2 numbers private static int gcd(int reduceNum int b) { return b == 0 ? reduceNum : gcd(b reduceNum % b); } // Here 'a' is integer and 'b' // is string. The idea is to make // the second number (represented // as b) less than and equal to // first number by calculating its // modulus with first integer // number using basic mathematics private static int reduceB(int a String b) { int result = 0; for (int i = 0; i < b.length(); i++) { result = (result * 10 + b.charAt(i) - '0') % a; } return result; } private static int gcdLarge(int a String b) { // Reduce 'b' i.e the second // number after modulo with a int num = reduceB(a b); // Nowuse the euclid's algorithm // to find the gcd of the 2 numbers return gcd(num a); } // Driver code public static void main(String[] args) { // First Number which // is the integer int a = 1221; // Second Number is represented // as a string because it cannot // be represented as an integer // data type String b = '19837658191095787329'; if (a == 0) System.out.println(b); else System.out.println(gcdLarge(a b)); } // This code is contributed // by Tanishq Saluja. }
Python3 # Python3 program to find GCD of # two numbers such that the second # number can be very large. # Function to find gcd # of two integer numbers def gcd(a b) : if (a == 0) : return b return gcd(b % a a) # Here 'a' is integer and 'b' is string. # The idea is to make the second number # (represented as b) less than and equal # to first number by calculating its mod # with first integer number using basic # mathematics def reduceB(a b) : # Initialize result mod = 0 # Calculating mod of b with a # to make b like 0 <= b < a for i in range(0 len(b)) : mod = (mod * 10 + ord(b[i])) % a return mod # return modulo # This function returns GCD of # 'a' and 'b' where b can be # very large and is represented # as a character array or string def gcdLarge(a b) : # Reduce 'b' (second number) # after modulo with a num = reduceB(a b) # gcd of two numbers return gcd(a num) # Driver program # First number which is integer a = 1221 # Second number is represented # as string because it can not # be handled by integer data type b = '1234567891011121314151617181920212223242526272829' if a == 0: print(b) else: print(gcdLarge(a b)) # This code is contributed by Nikita Tiwari.
C# // C# program to find GCD of // two numbers such that the // second number can be very large. using System; class GFG { // function to find gcd // of two integer numbers public long gcd(long a long b) { if (a == 0) return b; return gcd(b % a a); } // Here 'a' is integer and // 'b' is string. The idea // is to make the second // number (represented as b) // less than and equal to // first number by calculating // its mod with first integer // number using basic mathematics public long reduceB(long a string b) { // Initialize result long mod = 0; // calculating mod of // b with a to make // b like 0 <= b < a for (int i = 0; i < b.Length; i++) mod = (mod * 10 + (b[i] - '0')) % a; return mod; } // This function returns GCD // of 'a' and 'b' where b can // be very large and is // represented as a character // array or string public long gcdLarge(long a string b) { // Reduce 'b' (second number) // after modulo with a long num = reduceB(a b); // gcd of two numbers return gcd(a num); } // Driver Code static void Main() { // first number // which is integer long a = 1221; // second number is represented // as string because it can not // be handled by integer data type string b = '1234567891011121314151617181920212223242526272829'; GFG p = new GFG(); if (a == 0) Console.WriteLine(b); else Console.WriteLine(p.gcdLarge(a b)); } } // This code is contributed by mits.
PHP // PHP program to find GCD of // two numbers such that the // second number can be very large. // function to find gcd of // two integer numbers function gcd($a $b) { if (!$a) return $b; return gcd($b % $a $a); } // Here 'a' is integer and 'b' // is string. The idea is to // make the second number // (represented as b) less than // and equal to first number by // calculating its mod with first // integer number using basic mathematics function reduceB($a $b) { // Initialize result $mod = 0; // calculating mod of b with // a to make b like 0 <= b < a for ($i = 0; $i < strlen($b); $i++) $mod = ($mod * 10 + $b[$i] - '0') % $a; // return modulo return $mod; } // This function returns GCD of // 'a' and 'b' where b can be // very large and is represented // as a character array or string function gcdLarge($a $b) { // Reduce 'b' (second number) // after modulo with a $num = reduceB($a $b); // gcd of two numbers return gcd($a $num); } // Driver Code // first number which is integer $a = 1221; // second number is represented // as string because it can not // be handled by integer data type $b = '1234567891011121314151617181920212223242526272829'; if ($a == 0) { echo($b); } else { echo gcdLarge($a $b); } // This code is contributed by nitin mittal. ?>
JavaScript <script> // JavaScript program to find GCD of two numbers such that // the second number can be very large. // function to find gcd of two integer numbers function gcd( a b) { if (!a) return b; return gcd(b%aa); } // Here 'a' is integer and 'b' is string. // The idea is to make the second number (represented // as b) less than and equal to first number by // calculating its mod with first integer number // using basic mathematics function reduceB( a b) { // Initialize result let mod = 0; // calculating mod of b with a to make // b like 0 <= b < a for (let i=0; i<b.length-1; i++) mod = (mod*10 + b[i] - '0')%a; return mod; // return modulo } // This function returns GCD of 'a' and 'b' // where b can be very large and is represented // as a character array or string function gcdLarge( a b) { // Reduce 'b' (second number) after modulo with a let num = reduceB(a b); // gcd of two numbers return gcd(a num); } // Driver program // first number which is integer let a = 1221; // second number is represented as string because // it can not be handled by integer data type let b = '1234567891011121314151617181920212223242526272829'; if (a == 0) document.write( b); else document.write(gcdLarge(a b)); // This code contributed by aashish1995 </script>
Çıkış
3
Zaman Karmaşıklığı: O(log (min(ab)))
Yardımcı Alan: O(log (min(ab)))
Bu makale GeeksforGeeks ekibi tarafından incelenmiştir.