Bir 'n' sayısı ve bir n sayı verildiğinde, sayıları kullanarak sıralayın Eşzamanlı Birleştir Sırala. (İpucu: shmget shmat sistem çağrılarını kullanmayı deneyin).
Bölüm 1: Algoritma (NASIL?)
Yinelemeli olarak iki çocuk işlemini sol yarı için bir sağ yarı için bir işlem yapın. Bir işlem için dizideki öğe sayısı 5'ten azsa bir işlem gerçekleştirin Ekleme Sıralaması . Daha sonra iki çocuğun ebeveyni sonucu birleştirir ve ebeveyne geri döner ve bu şekilde devam eder. Peki bunu nasıl eşzamanlı hale getirirsiniz?
Bölüm2: Mantıksal (NEDEN?)
Bu sorunun çözümünün önemli kısmı algoritmik değil, İşletim Sistemi ve çekirdek kavramlarını açıklamaktır.
Eşzamanlı sıralamayı başarmak için iki işlemin aynı dizide aynı anda çalışmasını sağlayacak bir yola ihtiyacımız var. İşleri kolaylaştırmak için Linux, basit API uç noktaları aracılığıyla çok sayıda sistem çağrısı sağlar. Bunlardan ikisi shmget() (paylaşılan hafıza tahsisi için) ve shmat() (paylaşılan hafıza işlemleri için). Çatalladığımız alt süreçler arasında paylaşılan bir hafıza alanı yaratıyoruz. Her bölüm, aynı anda çalıştıkları için ilginç olan kısım olarak sıralanan sol ve sağ çocuğa bölünmüştür! shmget(), çekirdeğin bir tahsis etmesini ister. paylaşılan sayfa her iki süreç için de.
Geleneksel fork() neden çalışmıyor?
Cevap fork() fonksiyonunun gerçekte ne yaptığında yatıyor. Belgelerden 'fork(), çağırma işlemini kopyalayarak yeni bir işlem oluşturur'. Alt süreç ve ana süreç ayrı bellek alanlarında çalışır. fork() zamanında her iki bellek alanı da aynı içeriğe sahiptir. Bellek, işlemlerden birinin yaptığı dosya-tanımlayıcı(fd) değişiklikleri vb. yazar, diğerini etkilemez. Bu nedenle paylaşılan bir hafıza bölümüne ihtiyacımız var.
#include #include #include #include #include #include #include #include void insertionSort(int arr[] int n); void merge(int a[] int l1 int h1 int h2); void mergeSort(int a[] int l int h) { int i len = (h - l + 1); // Using insertion sort for small sized array if (len <= 5) { insertionSort(a + l len); return; } pid_t lpid rpid; lpid = fork(); if (lpid < 0) { // Lchild proc not created perror('Left Child Proc. not createdn'); _exit(-1); } else if (lpid == 0) { mergeSort(a l l + len / 2 - 1); _exit(0); } else { rpid = fork(); if (rpid < 0) { // Rchild proc not created perror('Right Child Proc. not createdn'); _exit(-1); } else if (rpid == 0) { mergeSort(a l + len / 2 h); _exit(0); } } int status; // Wait for child processes to finish waitpid(lpid &status 0); waitpid(rpid &status 0); // Merge the sorted subarrays merge(a l l + len / 2 - 1 h); } /* Function to sort an array using insertion sort*/ void insertionSort(int arr[] int n) { int i key j; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; /* Move elements of arr[0..i-1] that are greater than key to one position ahead of their current position */ while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } // Method to merge sorted subarrays void merge(int a[] int l1 int h1 int h2) { // We can directly copy the sorted elements // in the final array no need for a temporary // sorted array. int count = h2 - l1 + 1; int sorted[count]; int i = l1 k = h1 + 1 m = 0; while (i <= h1 && k <= h2) { if (a[i] < a[k]) sorted[m++] = a[i++]; else if (a[k] < a[i]) sorted[m++] = a[k++]; else if (a[i] == a[k]) { sorted[m++] = a[i++]; sorted[m++] = a[k++]; } } while (i <= h1) sorted[m++] = a[i++]; while (k <= h2) sorted[m++] = a[k++]; int arr_count = l1; for (i = 0; i < count; i++ l1++) a[l1] = sorted[i]; } // To check if array is actually sorted or not void isSorted(int arr[] int len) { if (len == 1) { std::cout << 'Sorting Done Successfully' << std::endl; return; } int i; for (i = 1; i < len; i++) { if (arr[i] < arr[i - 1]) { std::cout << 'Sorting Not Done' << std::endl; return; } } std::cout << 'Sorting Done Successfully' << std::endl; return; } // To fill random values in array for testing // purpose void fillData(int a[] int len) { // Create random arrays int i; for (i = 0; i < len; i++) a[i] = rand(); return; } // Driver code int main() { int shmid; key_t key = IPC_PRIVATE; int *shm_array; int length = 128; // Calculate segment length size_t SHM_SIZE = sizeof(int) * length; // Create the segment. if ((shmid = shmget(key SHM_SIZE IPC_CREAT | 0666)) < 0) { perror('shmget'); _exit(1); } // Now we attach the segment to our data space. if ((shm_array = (int *)shmat(shmid NULL 0)) == (int *)-1) { perror('shmat'); _exit(1); } // Create a random array of given length srand(time(NULL)); fillData(shm_array length); // Sort the created array mergeSort(shm_array 0 length - 1); // Check if array is sorted or not isSorted(shm_array length); /* Detach from the shared memory now that we are done using it. */ if (shmdt(shm_array) == -1) { perror('shmdt'); _exit(1); } /* Delete the shared memory segment. */ if (shmctl(shmid IPC_RMID NULL) == -1) { perror('shmctl'); _exit(1); } return 0; }
Java import java.util.Arrays; import java.util.Random; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; public class ConcurrentMergeSort { // Method to merge sorted subarrays private static void merge(int[] a int low int mid int high) { int[] temp = new int[high - low + 1]; int i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } System.arraycopy(temp 0 a low temp.length); } // RecursiveAction for fork/join framework static class SortTask extends RecursiveAction { private final int[] a; private final int low high; SortTask(int[] a int low int high) { this.a = a; this.low = low; this.high = high; } @Override protected void compute() { if (high - low <= 5) { Arrays.sort(a low high + 1); } else { int mid = low + (high - low) / 2; invokeAll(new SortTask(a low mid) new SortTask(a mid + 1 high)); merge(a low mid high); } } } // Method to check if array is sorted private static boolean isSorted(int[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Method to fill array with random numbers private static void fillData(int[] a) { Random rand = new Random(); for (int i = 0; i < a.length; i++) { a[i] = rand.nextInt(); } } public static void main(String[] args) { int length = 128; int[] a = new int[length]; fillData(a); ForkJoinPool pool = new ForkJoinPool(); pool.invoke(new SortTask(a 0 a.length - 1)); if (isSorted(a)) { System.out.println('Sorting Done Successfully'); } else { System.out.println('Sorting Not Done'); } } }
Python3 import numpy as np import multiprocessing as mp import time def insertion_sort(arr): n = len(arr) for i in range(1 n): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key def merge(arr l mid r): n1 = mid - l + 1 n2 = r - mid L = arr[l:l + n1].copy() R = arr[mid + 1:mid + 1 + n2].copy() i = j = 0 k = l while i < n1 and j < n2: if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < n1: arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[j] j += 1 k += 1 def merge_sort(arr l r): if l < r: if r - l + 1 <= 5: insertion_sort(arr) else: mid = (l + r) // 2 p1 = mp.Process(target=merge_sort args=(arr l mid)) p2 = mp.Process(target=merge_sort args=(arr mid + 1 r)) p1.start() p2.start() p1.join() p2.join() merge(arr l mid r) def is_sorted(arr): for i in range(1 len(arr)): if arr[i] < arr[i - 1]: return False return True def fill_data(arr): np.random.seed(0) arr[:] = np.random.randint(0 1000 size=len(arr)) if __name__ == '__main__': length = 128 shm_array = mp.Array('i' length) fill_data(shm_array) start_time = time.time() merge_sort(shm_array 0 length - 1) end_time = time.time() if is_sorted(shm_array): print('Sorting Done Successfully') else: print('Sorting Not Done') print('Time taken:' end_time - start_time)
JavaScript // Importing required modules const { Worker isMainThread parentPort workerData } = require('worker_threads'); // Function to merge sorted subarrays function merge(a low mid high) { let temp = new Array(high - low + 1); let i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } for (let p = 0; p < temp.length; p++) { a[low + p] = temp[p]; } } // Function to check if array is sorted function isSorted(a) { for (let i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Function to fill array with random numbers function fillData(a) { for (let i = 0; i < a.length; i++) { a[i] = Math.floor(Math.random() * 1000); } } // Function to sort the array using merge sort function sortArray(a low high) { if (high - low <= 5) { a.sort((a b) => a - b); } else { let mid = low + Math.floor((high - low) / 2); sortArray(a low mid); sortArray(a mid + 1 high); merge(a low mid high); } } // Main function function main() { let length = 128; let a = new Array(length); fillData(a); sortArray(a 0 a.length - 1); if (isSorted(a)) { console.log('Sorting Done Successfully'); } else { console.log('Sorting Not Done'); } } main();
Çıkış:
Sorting Done Successfully
Zaman Karmaşıklığı :O(N log N )
Yardımcı Alan:O(N)
Performans iyileştirmeleri mi?
Kodu zamanlamaya çalışın ve performansını geleneksel sıralı kodla karşılaştırın. Sıralı sıralama performansının daha iyi olduğunu öğrendiğinizde şaşıracaksınız!
Sol çocuğun sol diziye eriştiği söylendiğinde dizi bir işlemcinin önbelleğine yüklenir. Artık sağ diziye erişildiğinde (eşzamanlı erişimler nedeniyle), önbellek sol bölümle doldurulduğundan ve ardından sağ bölüm önbelleğe kopyalandığından bir önbellek kaybı meydana gelir. Bu ileri geri işlem devam eder ve performansı sıralı koddan daha kötü performans gösterecek bir seviyeye düşürür.
Kodun iş akışını kontrol ederek önbellek kayıplarını azaltmanın yolları vardır. Ancak bunlardan tamamen kaçınılamaz!